Academic Journal of Entomology 13 (2): 41-49, 2020 ISSN 1995-8994 © IDOSI Publications, 2020 DOI: 10.5829/idosi.aje.2020.41.49

Evaluation the Effectiveness of Two Various Compounds Against Green Peach Aphid, *Myzus persicae* Sulzer and Their Indirect Impacts on the Green Lacewing, *Chrysoperla carnea* (Stephens)

Wessam Z. Aziz

Plant Protection Research Institute, Agricultural Research Center, Dokki Giza, Egypt

Abstract: Series laboratory experiments were conducted to examine the efficacy of different concentrations of the essential lemon oil and the novel systemic insecticide closer against the green peach aphid, *Myzus persicae* Sulzer and investigate their indirect impacts on the predator, *Chrysoperla carnea* (Stephens). Findings indicated that both lemon oil and closer were highly effective in managing *M. persicae* whereas lemon oil seemed to be less sharp on *C. carena* compared with closer. The mortality rates varied for the different concentrations used where it was high by the higher concentrations than the lower one particularly in the youth instars, where the first and second in star larvae of the predator proved to be more susceptible than its third in star which showed to be most tolerance.

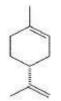
Key words: Myzus persicae · Chrysoperla carnea · Lemon oil · Closer

INTRODUCTION

The green peach aphid, M. persicae is one of the main serious pests worldwide which causes an economic damage to vegetables and fruits [1]. It have an extremely wide host range in over 40 different plant families, due to its short generation and massive fecundity it can amount a very high population densities, thus it is able to cause critical damage directly by sucking the host plant which leads to many problems like wilting, deformation, premature leaf senescence and retarded growth rate of the plant and indirectly by its capable to transmit several viral diseases to planted vegetables[2, 3]. M. persicae is an important vector of over 100 plant viruses and the ability of both nymphs and adults to transmit the virus is equal [4, 5]. Moreover, honeydew and sooty mould causes more damage to the plant beside contamination of harvestable plant which causes considerable losses [6].

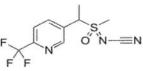
Increase the use of chemical insecticides in control over many years encouraged insect phytotoxicity, resistance and unbalance in the normal biotic ecosystem [7]. *M. persicae* resistance to many synthetic insecticides is widely reported and its mechanisms are reviewed [8]. It is also causing many other problems such as environmental pollution and toxic threats to human beings as well as its harmful effect on the non-target organisms like the natural enemies of the insect including the polyphagous, *C. carnea* [9, 10]. The green lacewing, *C. carnea* act as one of the most important predators that has been effectively used to control various insect pests due to the ability of its larvae to feed on a wide prey range including aphidswhere commonly found in agricultural systems and widely used for aphid biocontrol [11, 12].

Thus, finding new plant protection alternatives being effective in control insect pests and safer on non- target organisms and environment has become necessary. Plant extracts and essential oils are generally among the substances which considered safe for the environment and health where it isolated from plants [13]. Weinzierl and Henn [14] reported a new interest in using natural products to control pests with reduce chemical insecticides dangers, including botanical oils [15]. Lemon oil is a natural compound derived from lemon fruits, Citrus limon L. (Sapindales: Rutaceae) which has toxic effect against insect pests [16]. Therefore, it could represent important tool in pest management including aphids, but the assessment of their risk on the natural enemies and the other non-target organisms is still very necessary. Sulfoximines also are a new class of insecticides targeting sap-feeding insects [17, 18]. The present study was conducted to examine the efficacy of different concentrations of the essential lemon oil and


the systemic insecticide sulfoxaflor (closer®) which classified as a sulfoximine on *M. persicae* and investigate their indirect impacts on the predator, *C. carnea* under laboratory conditions.


MATERIALS AND METHODS

Rearing of the Insects: To begin the experiment, green peach aphids, *M. percicae* were collected from infested tomato plants at the unsprayed experimental farm of Faculty of Agriculture, Mansoura University and transported to the laboratory in paper bags. Tomato leaves carrying *M. persicae* were transferred and kept in jars covered with muslin and aphids were supplied with fresh tomato leaves which were provided for it daily where it maintained for approximately two generations before the beginning of the experiment.


To secure sufficient numbers of the 1st, 2nd and 3rd instars of *C. carnea* to carry out all experiments, neonate predator larvae were obtained from the Bio-Control Laboratory of the Plant Protection Research Institute, Dokki, Egypt and continuous laboratory cultures were established. *M. percicae* were offered to predator during its development except the adult. Colonies were kept at $27\pm2^{\circ}$ C and $65\pm5\%$ RH.

Compounds Used: Essential lemon oil (volatile) was extracted from the lemon fruit peels by steam distillation apparatus found in Plant Protection Institute, Mansoura, Egypt. The oil was separated dried over anhydrous sodium sulfate and stored in dark glass bottles at 4°C in refrigerator until used. The active ingredient of lemon oil is limonene and the chemical formula is $C_{10}H_{16}$.

The insecticide Sulfoxaflor, also marketed as Isoclast (Closer 24%, SC), which is a member of a class of chemicals called sulfoximines and its chemical formula is $C_{10}H_{10}F_3N_3O_8$.

Sulfoxaflor structure

On basis of the examined plant oil weight and the volume of the distilled water (w/v) in the presence of tween 80 (0.1%) as emulsifier, convenient stock concentrations of lemon oil were prepared periodically and stored under refrigeration in closed glass bottles. Four diluted concentrations for lemon oil was used to draw the LC-P lines, beside concentrations of the insecticide which were prepared by the use of distilled water only while the untreated was prepared by distilled water with tween 80 (0.1%).

Experiments Application: To evaluate the efficacy of lemon oil and closer on *M. persicae* four concentrations of each of them were used by the directly sprayed from a distance of 20 cm. on the target insect pest where 250, 500, 750 and 1000 ppm were used for lemon oil and 26.25, 52.5, 105 and 210 ppm for the insecticide. Four replicates were observed for every treatment. Twenty individuals of green aphids were placed on tomato leaves in Petri dishes (9 cm in diameter) and treated with concentrations mentioned for each treatment to estimate the mortality line and the same in the untreated which was sprayed only by distilled water and tween. The mortality percentage was calculated and corrected according to Abbott [20]. LC₅₀ values were determined using probit analysis statistical method of Finney [21] and LC50 index was determined by the following equation according to Sun [22].

Toxicity inder for $LC_{50} = \frac{LS_{50}}{LC_{50}}$ of the most effective compound ×100

On the other side, three separated experiments were conducted to investigate the indirect effect of lemon oil and closer on the predator, *C. carnea* through provided *M. persicae* treated by direct spraying with various concentrations of the current compounds to its first, second and third instars as food where 250, 500 and 1000 ppm were used for lemon oil and 52.5, 105 and 210 ppm for the insecticide.

After six hours starved, first instar larvae of *C. carnae* were introduced individually into Petri dishes which containing treated aphids. Each treatment was replicated ten times. To avoid cannibalism, only one larva of the predator was placed separately in each replicate and the same in the untreated. Predator larvae were supplied with treated aphids for only two days and numbers of dead larvae were recorded after 48 hours then the remaining live larvae were provided with untreated *M. persicae* and after completion of larval development, pupae were kept to adult emergence. The predator mortality rate was assessed during stages of its development until the emergence of adults.

In the same way, the experiment was repeated using the second and the third instars of *C. carnea* and both duration and mortality were recorded in all treatments during predator development. Statistically analyzed of data were done using Co Stat Computer Software, according to CoHort [23].

RESULTS AND DISCUSSION

Efficiency of Essential Lemon Oil and Closer on M. persicae: Data presented in Table (1) showed that both lemon oil and closer were highly effective in managing *M. persicae* with LC_{50} and LC_{90} where LC_{50} was 65.05 and 0.714 ppm for lemon oil and closer, respectively while LC₉₀ was 507.92 ppm for lemon oil and 30.316 ppm for closer (Figure 1). After o ne day, mortality rates of *M. persicae* were 30%, 40%, 42.5% and 50% at 250, 500, 750 and 1000 ppm, respectively by lemon oil. Whereas, it recorded 68.75 %, 71.25%, 82.5% and 86.25% at 26.25, 52.5, 105 and 210 ppm, respectively by closer. Sulfoxaflor is a systemic insecticide, acts as a neurotoxin to affected insects and kills through contact or ingestion. It is extremely effective against many sap-feeding insects, including, aphids in all major vegetables and crops[24]. Barrania et al. [25] reported that sulfoxaflor exhibited fast action activity against A. gossypii. In addition, Convertini et al.[26]reported the successfully used of sulfoxaflor against A. gossypii on horticultural crops. Five days post treatment, corrected total mortality of M. persicae ranged from 80% to 96.25% for 250 and 1000 ppm of lemon oil, respectively. While in closer, it ranged between 88.75% for 26.25 ppm to 97.5% for 210 ppm then reached to 100% in both of them. Tang et al. [27] showed that sulfoxaflor possessed high toxicity against *M. persicae*, with an LC_{50} of 0.059 mg/liter through Leaf-dip bioassays. However, although lemon essential oil was natural material, it was highly toxic also to M. persicae [28]. This findings were in agreement with Al-Antary et al. [17] who proved that lemon oil was very effective in controlling the green peach aphid, M. persicae when using four solvents acetone, ethanol, n-hexane and chloroform where Al-Antary et al. [29] noted that essential oil has a great ability to penetrate through the cuticle of aphids and they have also been shown to act as a contact neurotoxin against several insects including the green peach aphid, by damaging their olfactory senses [30, 31]. Prates et al. [32] showed that essential oils reveal contact toxicity through the insect cuticle. Coats et al. [33] discussed the toxicity and neurotoxic effects of monoterpenoids (including d-limonene) and Ibrahim et al. [34] reviewed the suitability of limonene for control of insect pests wherefore several reports suggest using limonene for its control.

Indirect Impacts of Essential Lemon Oil and Closer on C. carnea: Tables (2, 3 and 4) showed the effectiveness of different concentrations of lemon oil and closer on C. carnea after feeding its 1st, 2nd and 3rd instars on treated M. persicae under laboratory conditions. Results indicated that after 48 h, the highest mortality rate of the 1st instar larvae of C. carnea was 20% (0.2±0.13) after feeding it on M. persicae treated by concentrations 500 and 1000 ppm of lemon oil while it was 50% (0.5 ± 0.16), 80% (0.8±0.13) and 90% (0.9±0.1), respectively after its feeding on aphids treated by 52.5, 105 and 210 ppm of closer. In the d ays following the past of the first 48 h, the loss rate in the larval stage ranged from 30% to 60% at the use of 250 and 1000 ppm of lemon oil, respectively. Where, although lemon oil had less effect on the predator in comparison with closer, higher concentrations of both them caused higher loss. At the use of the lowest concentration of oil, 50% of the larvae were able to complete their development and reached successfully to the adult. Nasreen et al. [35] revealed that higher concentrations of some examined insecticides through leaf dip bioassay method was proved to have detrimental effects against neonate of C. carnea as compared to lower concentration, beside those including imidacloprid which found to be harmful to the predator at all concentrations after exposure for 24 and 48 h under laboratory conditions. First instar larvae of Episyrphus balteatus DeGeer proved to be highly susceptible, when feeding 24 h on aphids sprayed with neem kernel water extract [36].Mortality rate differed significantly at the treatments used with its different concentrations after 48h and from the 1st instar larvae to adults as well as durations during its different developmental stages (Tables 2 and 5).

When the 2nd instar larvae of *C. carnea* was fed on treated *M. persicae* by closer, the mortality rate 40% (0.4 ± 0.16) , 60% (0.6 ± 0.16) and 80% (0.8 ± 0.13) were achieved by the use of 52.5, 105 and 210 ppm respectively, 48h post treated. 70%, 60% and 40% of larvae were able to reach to the adult at 250, 500 and 1000 ppm respectively, when using oil which seemed to be less impact on the predator in compared to closer. Gatineau *et al.* [37], observed that synthetic and bio pesticides effect on mortality and biology of *C. carnea*. It was also observed that 2nd instar larvae of the predator were more tolerant than its 1st instar and this is in agreement with Ahmad *et al.* [36] who reported that 2nd instar larvae of

Acad. J. Entomol., 13 (2): 41-49, 2020	Acad. J	Entomol.,	13 (2): 41-49	. 2020
--	---------	-----------	-------	----------	--------

Table 1: Eff	iciency of essei	ntial lemon oil and closer agains	t <i>M. persicae</i> under laboratory conditions				
Treatments	Conc. (ppm.)	Mortality rate after one day %	Corrected total mortality after five days $\%$	LC_{50}	LC ₉₀	Slope± S.D.	Toxicity index LC ₅₀
Lemon oil	250	30	80	65.05	507.92	1.44 ± 0.36	1.1
	500	40	90				
	750	42.5	93.75				
	1000	50	96.25				
Closer	26.25	68.75	88.75	0.714	30.316	0.787 ± 0.313	100
	52.5	71.25	93.75				
	105	82.5	95				
	210	86.25	97.5				

f and all land and all and all a

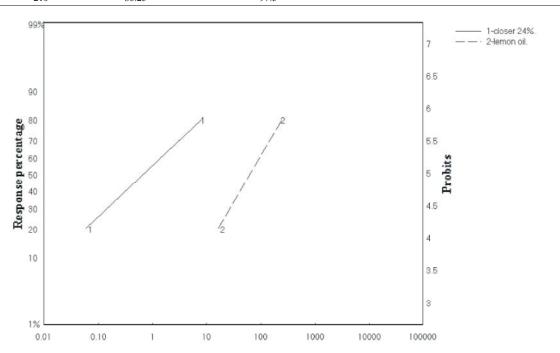


Fig. 1: LC-P line for lemon oil and closer 24% against M. persicae

Coccinella septempunctata L. were less susceptible when feeding on neem-sprayed aphids than 1st instars which showed a very high mortality when feeding on aphids sprayed with different neem preparations. After the first 48 h, no significant difference was found on mortality rate at the use of 250 ppm of the oil with the untreated and also on the duration of the 2nd instar larvae of the predator for the same concentration, while there was a highly significant difference in the rate of mortality at the other treatments used with its different concentrations after 48 h and, from the 2nd instar larvae to adults as well as durations during its different developmental stages between each of them and also the untreated (Tables 3 and 6).

Despite the failure of 10% (0.1 \pm 0.1) of the 3rd instars larvae of the predator to pupate after fed on treated aphids by lemon oil at 500 ppm and 20% (0.2 ± 0.13) at 1000 ppm, but 100%, 80% and 60% of larvae were able to completed its development and adult emergence when 250, 500 and 1000 ppm used, respectively. In the case of closer also, larvae succeeded to pupate and reached to adult stage for 60% (0.6 ± 0.16) by the use of 52.5 ppm and 40% (0.4 \pm 0.16) by the use of 105 ppm. Nasreen et al.[35] observed that once C. carnea larvae tolerated the insecticide exposure, they could pupate and adults emerge successfully. Barrania et al.[25]conducted field experiments on cucumber to studied the efficiency of some insecticides including sulfoxaflor, they mentioned its slightly toxic on C. carnea, with the consideration of difference in effects between the field and the laboratory which are frequently more [38-39]. No significant difference was found on the mortality rate of the 3rd instars larvae of the predator after the first 48h at the three concentrations used of the oil with the untreated but it differed significantly at the three concentrations used of closer, also highly significant difference was found in the

Acad. J. Entomol., 13 (2): 41-49, 2020

		Rates and Means morta					
		After 48 h				Until the rest of the te	est
reatments		 1 st	1 st	2 nd	3 rd	Р.	A.
emon oil	250ppm	0.1± 0.1 d (10%)	0.2±0.13 ab (20%)	0.1±0.1 a (10%)	0 a (0%)	0.1±0.1 a (10%)	0 (0%)
	500ppm	0.2±0.13 cd (20%)	0.3±0.15 ab (30%)	0.1±0.1 a (10%)	0.1±0.1 a (10%)	0 a (0%)	0 (0%)
1	1000ppm	0.2±0.13 cd (20%)	0.4±0.16 a (40%) 0.2±0.13 ab (20%)	0.2±0.13 a (20%)	0 a (0%) 0.1±0.1 a (10%)	0 a (0%)	0 (0%)
loser	52.5ppm 105ppm	0.5±0.16 bc (50%) 0.8±0.13 ab (80%)	0.2 ± 0.13 ab (20%) 0.2 ± 0.13 ab (20%)	0.1±0.1 a (10%) 0 a (0%)	0.1±0.1 a (10%) 0 a (0%)	0 a (0%) 0 a (0%)	0 (0%) 0 (0%)
	210ppm	0.9±0.1 a (90%)	0.1±0.1 ab (10%)	0 a (0%)	0 a (0%)	0 a (0%)	0 (0%)
ntreated		0 d (0%)	0 b (0%)	0 a (0%)	0 a (0%)	0 a (0%)	0 (0%)
SD		0.339	0.359	0.233	0.151	0.106	
		8.637 ***	1.029	0.837	0.833	1.0	
		Rates and Means surviv	ns val ± SEM	ns	ns	ns	
		After 48 h				Until the rest of the te	 >et
eatments		1 st	1 st	2 nd	3 rd	Р.	Α.
emon oil	250ppm	0.9±0.1 a (90%) 0.8±0.13 ab (80%)	0.7±0.15 ab (70%) 0.5±0.16 bc (50%)	0.6±0.16 b (60%) 0.4±0.16 bc (40%)	0.6±0.16 b (60%) 0.3±0.15 c (30%)	0.5±0.16 b (50%) 0.3±0.15 c (30%)	0.5±0.16 b (50%) 0.3±0.15 bc (30%)
	500ppm 1000ppm	0.8±0.13 ab (80%)	0.3 ± 0.16 bc (30%) 0.4 ± 0.16 bc (40%)	0.4 ± 0.18 bc (40%) 0.2 ± 0.13 cd (20%)	0.2±0.13 cd (20%)		0.3±0.13 bc (30%) 0.2±0.13 c (20%)
oser	52.5ppm	0.5±0.16 bc (50%)	0.3±0.15 cd (30%)	0.3±0.15 cd (30%)	0.1±0.1 cd (10%)	0.1±0.1 c (10%)	0.1±0.1 c (10%)
	105ppm	0.2±0.13 cd (20%)	0 d (0%)	0 d (0%)	0 d (0%)	0 c (0%)	0 c (0%)
	210ppm	0.1±0.1 d (10%)	0 d (0%)	0 d (0%)	0 d (0%)	0 c (0%)	0 c (0%)
ntreated		1 a (100%)	1 a (100%)	1 a (100%)	1 a (100%)	1 a (100%)	1 a (100%)
SD		0.339	0.339	0.328	0.297	0.300	0.300
		8.637 ***	9.098 ***	9.352 ***	12.128	11.239	11.239
		Rates and Means failed	individuals ± SEM				
eatments			2 nd	3 rd	The larval stage	Р.	From the 1st instar to adu
emon oil	250ppm	0.3±0.15 cd (30%)	0.1±0.1 a (10%)	0 a (0%)	0.4±0.16 b (40%)	0.1±0.1 a (10%)	0.5±0.16 b (50%)
	500ppm	0.5±0.16 bc (50%)	0.1±0.1 a (10%)	0.1±0.1 a (10%)	0.7±0.15 a (70%)	0 a (0%)	0.7±0.15 ab (70%)
	1000ppm	0.6±0.16 bc (60%)	0.2±0.13 a (20%)	<u>0 a (0%)</u>	0.8±0.13 a (80%)	<u>0 a (0%)</u>	0.8±0.13 ab (80%)
oser	52.5ppm	0.7±0.15 ab (70%) 1 a (100%)	0.1±0.1 a (10%) 0 a (0%)	0.1±0.1 a (10%) 0 a (0%)	0.9±0.1 a (90%) 0 c (0%)	0 a (0%) 0 a (0%)	0.9±0.1 a (90%) 1 a (100%)
	105ppm 210ppm	1 a (100%)	0 a (0%) 0 a (0%)	0 a (0%)	0 c (0%)	0 a (0%) 0 a (0%)	1 a (100%)
ntreated	210ppm	0 d (0%)	0 a (0%)	0 a (0%)	0 c (0%)	0 a (0%)	0 c (0%)
SD		0.339	0.233	0.151	0.297	0.106	0.300
		Rates and Means mortalit	non oil and closer on the dev ty \pm SEM	0.833 ns elopment of <i>C. carnea</i>	14.7 *** after feeding its 2 nd ins	1.0 ns star larvae on treated <i>M. pers</i>	11.239 *** sicae under laboratory conditi
leans follow		*** etter in a column are not signif concentrations of essential len Rates and Means mortalit	ns ficantly different at LSD 5% non oil and closer on the dev ty ± SEM	ns	***	ns star larvae on treated <i>M. pers</i>	***
Aeans follow		*** etter in a column are not signification of essential len Rates and Means mortaliti Rates 48 h	ns ficantly different at LSD 5% non oil and closer on the dev ty ± SEM	ns elopment of <i>C. carnea</i>	***	ns tar larvae on treated M. pers Until the rest of the test	
Aeans follow able 3: Effic: reatments	acy of different c	*** etter in a column are not significant effective effe	ns ficantly different at LSD 5% non oil and closer on the dev y ± SEM	ns elopment of <i>C. carnea</i>	*** after feeding its 2 nd in:	ns itar larvae on treated <i>M. pers</i> Until the rest of the test P.	*** sicae under laboratory conditi
Aeans follow able 3: Effic: reatments	acy of different c	*** etter in a column are not significant ender the second ender the secon	ns ficantly different at LSD 5% aon oil and closer on the dev y ± SEM 2 ^{ad} 0.1±0.1 a (10%)	ns elopment of <i>C. carnea</i> 	*** after feeding its 2 nd ins	ns tar larvae on treated <i>M. pers</i> Until the rest of the test P. 0.1±0.1 a (10%)	*** <i>sicae</i> under laboratory conditi
Aeans follow able 3: Effic: reatments	acy of different c	*** etter in a column are not signification of essential len Rates and Means mortalit After 48 h 2 ^{-d} 0 d (0%) 0.1±0.1 cd (10%)	ns ficantly different at LSD 5% non oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%)	ns elopment of <i>C. carnea</i> 	*** after feeding its 2 nd ins 	ns ttar larvae on treated <i>M. pers</i> Until the rest of the test P. 0.1±0.1 a (10%) 0 a (0%)	*** sicae under laboratory conditi
Means follow able 3: Effic: eatments emon oil	250ppm 500ppm 1000ppm	*** exter in a column are not signif concentrations of essential len Rates and Means mortalit After 48 h 2 nd 0 d (0%) 0.1±0.1 cd (10%) 0.2±0.13 cd (20%)	<u>ns</u> ficantly different at LSD 5% non oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.3±0.1 5 a (10%)	ns elopment of <i>C. carnea</i> 3 ^d 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1	*** after feeding its 2 nd ins 	ns tar larvae on treated <i>M. pers</i> Until the rest of the test P. 0.1±0.1 a (10%) 0 a (0%) 0 a (0%)	*** sicae under laboratory conditi A. 0 (0%) 0 (0%) 0 (0%)
Aeans follow able 3: Effic: reatments emon oil	acy of different c	*** etter in a column are not signification etter in a column are not signification etter in a column are not signification etter at the second s	<u>ns</u> ficantly different at LSD 5% non oil and closer on the dev y ± SEM <u>2nd</u> 0.1±0.1 a (10%) 0.3±0.15 a (30%) 0.2±0.13 a (20%) 0.2±0.13 a (20%)	ns elopment of <i>C. carnea</i> 3 st 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1	*** after feeding its 2 nd ins 	ns tar larvae on treated <i>M. pers</i> Until the rest of the test D.1±0.1 a (10%) 0 a (0%) 0 a (0%) 0 a (0%) 0 a (0%)	*** sicae under laboratory conditi A. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Means follow able 3: Effic: reatments emon oil loser	250ppm 500ppm 1000ppm 52.5ppm	*** exter in a column are not signif concentrations of essential len Rates and Means mortalit After 48 h 2 nd 0 d (0%) 0.1±0.1 cd (10%) 0.2±0.13 cd (20%) 0.4±0.16 bc (40%) 0.6±0.13 ab (60%) 0.8±0.13 a (80%)	<u>ns</u> ficantly different at LSD 5% non oil and closer on the dev y ± SEM <u>2nd</u> 0.1±0.1 a (10%) 0.3±0.15 a (30%) 0.2±0.13 a (20%) 0.2±0.13 a (20%)	ns elopment of <i>C. carnea</i> 3 st 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0.2±0.13 a (1) 0.2±0.1 a (1)	*** after feeding its 2 nd ins 	ns tar larvae on treated <i>M. pers</i> Until the rest of the test P. 0.1±0.1 a (10%) 0 a (0%) 0 a (0%) 0 a (0%) 0 a (0%) 0 a (0%)	*** sicae under laboratory conditi A. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
eatments emon oil oser	250ppm 500ppm 1000ppm 105ppm	*** etter in a column are not signification etter in a column are not sin a column are not signification etter in a column ar	IS ficantly different at LSD 5% aon oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.3±0.1 a (10%) 0.3±0.15 a (30%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.4 (0%)	ns elopment of <i>C. carnea</i> 3 ^{at} 0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0 a (0%) 0 a (0%)	*** after feeding its 2 nd ins 	ns star larvae on treated M. pers Until the rest of the test P. 0.1 ± 0.1 a (10%) 0 a (0%)	*** sicae under laboratory conditi A. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Aeans follow able 3: Effic: eatments emon oil loser ntreated	250ppm 500ppm 1000ppm 105ppm	*** etter in a column are not signification end of the second se	ns ficantly different at LSD 5% non oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.3±0.15 a (30%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.332	ns elopment of <i>C. carnea</i> 3^{ni} 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0.4±0.1 a (1 0 a (0%) 0.256	*** after feeding its 2 nd ins 	ns tar larvae on treated <i>M. pers</i> Until the rest of the test P. 0.1±0.1 a (10%) 0 a (0%) 0 a (0%)	*** sicae under laboratory conditi A. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Aeans follow able 3: Effic: reatments emon oil loser ntreated	250ppm 500ppm 1000ppm 105ppm	*** etter in a column are not signification etter in a column are not sin a column are not signification etter in a column ar	IS ficantly different at LSD 5% aon oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.3±0.1 a (10%) 0.3±0.15 a (30%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.4 (0%)	ns elopment of <i>C. carnea</i> 3 ^{at} 0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0 a (0%) 0 a (0%)	*** after feeding its 2 nd ins 	ns star larvae on treated M. pers Until the rest of the test P. 0.1 ± 0.1 a (10%) 0 a (0%)	*** xicae under laboratory conditi A. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Aeans follow able 3: Effic: eatments emon oil loser ntreated	250ppm 500ppm 1000ppm 105ppm	*** exter in a column are not signif concentrations of essential len Rates and Means mortalit After 48 h 2 ^{ad} 0 d (0%) 0.1±0.1 cd (10%) 0.2±0.13 cd (20%) 0.4±0.13 cd (20%) 0.4±0.13 cd (20%) 0.6±0.16 ab (60%) 0.6±0.16 ab (60%) 0.4±0.23 c (80%) 0 d (0%) 0.335 6.842	IS ficantly different at LSD 5% ion oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.3±0.15 a (30%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.332 0.689 ns	ns elopment of <i>C. carnea</i> 3 st 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0.256 0.576	*** after feeding its 2 nd ins 	ns tar larvae on treated <i>M. pers</i> Until the rest of the test P. 0.1±0.1 a (10%) 0 a (0%) 0 a (0%) 0 a (0%) 0 a (0%) 0 a (0%) 0 a (0%) 1	*** xicae under laboratory conditi A. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
eatments emon oil oser	250ppm 500ppm 1000ppm 105ppm	*** exter in a column are not signification of essential len Rates and Means mortalit After 48 h 2 nd 0 d (0%) 0.1±0.1 cd (10%) 0.2±0.13 cd (20%) 0.4±0.16 bc (40%) 0.6±0.16 ab (60%) 0.6±0.13 a (80%) 0 d (0%) 0.335 6.842 ***	IS ficantly different at LSD 5% ion oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.3±0.15 a (30%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.332 0.689 ns	ns elopment of <i>C. carnea</i> 3 st 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0.256 0.576	*** after feeding its 2 nd ins 	ns tar larvae on treated <i>M. pers</i> Until the rest of the test P. 0.1±0.1 a (10%) 0 a (0%) 0 a (0%) 0 a (0%) 0 a (0%) 0 a (0%) 0 a (0%) 1	*** xicae under laboratory conditi A. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Aeans follow able 3: Effic: emon oil loser ntreated SD	250ppm 500ppm 1000ppm 105ppm	*** etter in a column are not significant of essential len Rates and Means mortalit	ns ficantly different at LSD 5% non oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.3±0.15 a (30%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.332 0.689 ns ± SEM	ns elopment of <i>C. carnea</i> 3 rd 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0 a (0%) 0 a (0%) 0.256 0.576 ns	*** after feeding its 2 nd ins 	ns tar larvae on treated M. pers Until the rest of the test P. 0.1 ± 0.1 a (10%) 0 a (0%) 0 until the rest of the test	*** xicae under laboratory conditi A. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Aeans follow able 3: Effic: emon oil loser htreated SD	250ppm 250ppm 500ppm 1000ppm 52.5ppm 105ppm 210ppm	*** etter in a column are not significant of essential len Rates and Means mortalit	ns ficantly different at LSD 5% non oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.322 0.689 ns 1± SEM 2 nd	ns elopment of <i>C. carnea</i> 3 ^d 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0 a (0%) 0.256 0.576 ns 3 ^d	*** after feeding its 2 ^{ml} ins	ns tar larvae on treated <i>M. pers</i> Until the rest of the test P. 0.1±0.1 a (10%) 0 a (0%) 0 a (0%) 0 a (0%) 0 a (0%) 0 a (0%) 0 a (0%) 0 a (0%) 1 ns Until the rest of the test P.	*** xicae under laboratory conditi A. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Aeans follow uble 3: Effic: reatments remon oil loser httreated SD reatments	250ppm 500ppm 1000ppm 52.5ppm 210ppm 210ppm	*** etter in a column are not significant of essential len Rates and Means mortalit	ns ficantly different at LSD 5% non oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.3±0.15 a (30%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.332 0.689 ns ± SEM	ns elopment of <i>C. carnea</i> 3 rd 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0 a (0%) 0 a (0%) 0.256 0.576 ns	*** after feeding its 2 nd ins	ns tar larvae on treated M. pers Until the rest of the test P. 0.1 ± 0.1 a (10%) 0 a (0%) 0 until the rest of the test	*** xicae under laboratory conditi A. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Aeans follow able 3: Effic: emon oil loser htreated SD	250ppm 500ppm 1000ppm 52.5ppm 210ppm 210ppm 250ppm 500ppm 1000ppm	*** etter in a column are not significant of essential len Rates and Means mortalit	IS ficantly different at LSD 5% ion oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.3±0.1 a (10%) 0.3±0.15 a (30%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.332 0.689 ns ± SEM 2 nd 0.9±0.1 a (90%)	ns elopment of <i>C. carnea</i> 3 ^d 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0 a (0%) 0 a (0%) 0.256 0.576 ns 3 ^d 0.8±0.13 ab 0.6±0.16 bc 0.4±0.16 cb	*** after feeding its 2 nd ins 0%) 20%) 0%) 0%) 0%) 0%) (80%) (60%) (60%) (60%) (60%) (60%)	ns tar larvae on treated M. pers Until the rest of the test P. 0.1 ± 0.1 a (10%) 0 a (0%) <	*** A. 0 (0%) 0
eatments	250ppm 500ppm 1000ppm 52.5ppm 210ppm 210ppm 250ppm 500ppm 500ppm 1000ppm 52.5ppm	*** etter in a column are not significant of essential len Rates and Means mortalit	IS ficantly different at LSD 5% ion oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.2±0.13 a (20%) 0.5±0.13 a (20%) 0.5±0.14 a (20%) 0.5±0.15 a (50%) 0.5±0.16 bc (50%) 0.4±0.16 c (40%)	ns elopment of <i>C. carnea</i> 3 ^{at} 0.1±0.1 a (1 0.2±0.13 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0 a (0%) 0 a (0%) 0 a (0%) 0.256 0.576 ns 3 ^{at} 0.8±0.13 ab 0.6±0.16 bc 0.4±0.16 cd 0.3±0.15 cd	*** after feeding its 2 nd ins 	ns tar larvae on treated M. pers Until the rest of the test P. 0.1 ± 0.1 a (10%) 0 a (0%) 0 (16 be (60%) 0.3 ± 0.15 bb (70%) 0.4 ± 0.16 be (40%) 0.3 ± 0.15 cde (30%)	*** A. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
eatments	250ppm 500ppm 1000ppm 2.5ppm 210ppm 210ppm 250ppm 500ppm 1000ppm 500ppm 1000ppm	*** etter in a column are not significant of essential len Rates and Means mortalit 2 nd 0 d (0%) 0.1±0.1 cd (10%) 0.2±0.13 cd (20%) 0.4±0.16 bc (40%) 0.4±0.13 bc (80%) 0.4±0.13 bc (80%) 0.4±0.13 bc (80%) 0.4±0.16 bc (60%) 0.4±0.16 bc (40%)	IS ficantly different at LSD 5% non oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.3±0.15 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.332 0.689 ns 1± SEM 2 nd 0.9±0.1 a (90%) 0.8±0.1 3 b (80%) 0.5±0.16 b (50%) 0.4±0.16 c (40%) 0.2±0.13 cd (20%)	ns elopment of C. carnea 3^{st} 0.1 ± 0.1 a (1 0.2 ± 0.13 a (1 0.1 ± 0.1 a (1 0.256 0.576 ns 3^{st} 0.8 ± 0.15 ab 0.6 ± 0.16 bc 0.4 ± 0.16 bc 0.3 ± 0.15 cd 0.1 ± 0.1 bc 0.1 ± 0.1 bc	*** after feeding its 2 nd ins 	ns tar larvae on treated M. pers Until the rest of the test P. 0.1±0.1 a (10%) 0 a (0%) 0 c=0.16 bc (60%) 0.4±0.16 bcd (40%) 0.3±0.15 cde (30%) 0.1±0.1 de (10%)	*** A. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 A. A. 0.7±0.15 ab (70%) 0.6±0.16 bcd (40%) 0.4±0.15 cde (30%) 0.1±0.1 dc (10%)
Aeans follow <u>ible 3: Effic</u> eron oil coser intreated SD <u>reatments</u> eron oil coser	250ppm 500ppm 1000ppm 52.5ppm 210ppm 210ppm 250ppm 500ppm 500ppm 1000ppm 52.5ppm	*** etter in a column are not significant of essential len Rates and Means mortalit	IIS ficantly different at LSD 5% ion oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.322 0.689 ns 1± SEM 2 nd 0.9±0.1 a (90%) 0.5±0.16 bc (50%) 0.4±0.13 c (40%) 0.2±0.13 cd (20%)	ns elopment of <i>C. carnea</i> 3 ^d 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0 a (0%) 0 a (0%) 0.256 0.576 ns 3 ^d 0.8±0.13 ab 0.6±0.16 bc 0.4±0.16 cd 0.3±0.15 cd 0.1±0.1 de (0 e (0%)	*** after feeding its 2 nd ins 	ns Until the rest of the test P. 0.1±0.1 a (10%) 0 a (0%) 0.106 1 ns Until the rest of the test P. 0.7±0.15 ab (70%) 0.6±0.16 bc (60%) 0.4±0.16 bcd (40%) 0.3±0.15 cde (30%) 0.1±0.1 de (10%) 0 = (0%)	*** A. 0 (0%) 0
eatments	250ppm 500ppm 1000ppm 2.5ppm 210ppm 210ppm 250ppm 500ppm 1000ppm 500ppm 1000ppm	*** etter in a column are not significant of essential len Rates and Means mortalit	IIS ficantly different at LSD 5% ion oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.3±0.15 a (30%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.332 0.689 ns ± SEM 2 nd 0.9±0.1 a (90%) 0.5±0.16 bc (50%) 0.4±0.16 c (40%) 0.2±0.13 cd (20%) 0.4±0.16 c (40%) 0.4±0.16 c (40%) 0.4±0.16 c (40%)	ns elopment of <i>C. carnea</i> 3 ^{at} 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0 a (0%) 0 a (0%) 0.256 0.576 ns 3 ^{at} 0.8±0.13 ab 0.6±0.16 bc 0.4±0.16 cd 0.3±0.15 cd 0.1±0.1 de (0 a (0%) 1 a (100%) 1 a (100%)	*** after feeding its 2 nd ins 	ns tar larvae on treated M. pers Until the rest of the test P. 0.1 ± 0.1 a (10%) 0 a (0%) 0.106 1 $0.50.16$ bc (60%) 0.4 ± 0.16 bc (60%) 0.3 ± 0.15 cde (30%) 0.1 ± 0.1 dc (10%) 0 e (0%)	*** xicae under laboratory conditi A. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
eatments	250ppm 500ppm 1000ppm 2.5ppm 210ppm 210ppm 250ppm 500ppm 1000ppm 500ppm 1000ppm	*** etter in a column are not significant of essential len Rates and Means mortalit	IIS ficantly different at LSD 5% ion oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.322 0.689 ns 1± SEM 2 nd 0.9±0.1 a (90%) 0.5±0.16 bc (50%) 0.4±0.13 c (40%) 0.2±0.13 cd (20%)	ns elopment of <i>C. carnea</i> 3 ^d 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0 a (0%) 0 a (0%) 0.256 0.576 ns 3 ^d 0.8±0.13 ab 0.6±0.16 bc 0.4±0.16 cd 0.3±0.15 cd 0.1±0.1 de (0 e (0%)	*** after feeding its 2 nd ins 	ns Until the rest of the test P. 0.1±0.1 a (10%) 0 a (0%) 0.106 1 ns Until the rest of the test P. 0.7±0.15 ab (70%) 0.6±0.16 bc (60%) 0.4±0.16 bcd (40%) 0.3±0.15 cde (30%) 0.1±0.1 de (10%) 0 = (0%)	*** A. 0 (0%) 0
eatments	250ppm 500ppm 1000ppm 2.5ppm 210ppm 210ppm 250ppm 500ppm 1000ppm 500ppm 1000ppm	*** etter in a column are not significant of essential len Rates and Means mortalit After 48 h 2"4 0 d (0%) 0.1±0.1 cd (10%) 0.2±0.13 cd (20%) 0.4±0.16 bc (40%) 0.4±0.16 bc (40%) 0.5±0.13 a (80%) 0 d (0%) 0.3±5.13 a (80%) 0 d (0%) 0.3±5.13 a (80%) 0 d (0%) 0.3±5.13 ab (80%) 0 d (0%)	IIS ficantly different at LSD 5% ion oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.2±0.13 a (20%) 0.4±0.13 a (20%) 0.5±0.1 a (90%) 0.5±0.1 a (90%) 0.5±0.1 a (20%) 0.5±0.1 a (20%) 0.4±0.16 c (40%) 0.2±0.13 cd (20%) 0 d (0%) 1 a (100%) 1 a (100%) 0.337 9.766	ns elopment of C. carnea 3^{st} 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0.1±0.1 a (1 0.256 0.576 ns 3 st 0.8±0.13 ab 0.4±0.16 cd 0.3±0.15 cd 0.1±0.1 cl (b cd 0.1±0.1 cl (0 0.345	*** after feeding its 2 nd ins 	ns tar larvae on treated M. pers Until the rest of the test P. 0.1 ± 0.1 a (10%) 0 a (0%) 0 (16 bc (60%) 0.4 ± 0.16 bc (60%) 0.4 ± 0.16 bc (40%) 0.3 ± 0.15 cd (30%) 0.1 ± 0.16 (10%) $0 = (0%)$ 1 a (100%) 0.354	*** A. 0 (0%) 1 solo (0%) 0 (100) 1 a (100%) 0 (0.554
Aeans follow uble 3: Effic: eatments erron oil loser intreated SD eatments erron oil loser intreated SD	250ppm 500ppm 1000ppm 2.5ppm 210ppm 210ppm 250ppm 500ppm 1000ppm 500ppm 1000ppm	*** etter in a column are not significant of essential len Rates and Means mortalit	IS ficantly different at LSD 5% ion oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.2±0.13 a (20%) 0.4±0.13 a (20%) 0.4±0.13 a (20%) 0.4±0.13 a (20%) 0.4±0.13 a (20%) 0.5±0.14 a (90%) 0.5±0.16 bc (50%) 0.4±0.16 c (40%) 0.2±0.13 a (20%) 0.4±0.16 c (40%) 0.337 9.766 *** dividuals ± SEM	ns elopment of C. carnea 3 ^d 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.3±0.13 a (0%) 0.256 0.576 ns 3 ^d 0.8±0.13 ab (.6±0.16 bc (.0.3±0.15 cd (.0.4±0.16 cd (.0.4±0.16 cd (.0.4±0.16 cd (.0.4±0.16 cd (.0.4±0.16 cd (.0.4±5 8.904) 1 a (100%) 0.345 8.904 ****	*** after feeding its 2 nd ins 	ns tar larvae on treated M. pers Until the rest of the test P. 0.1±0.1 a (10%) 0 a (0%) 0 a (15 cb (60%) 0.4±0.16 bcd (40%) 0.4±0.16 bcd (40%) 0.1±0.1 dc (10%) 0 ce (0%) 1 a (10%) 0.354 7.818 ***	*** A. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Veans follow able 3: Effic: emon oil loser ntreated SD loser entments emon oil loser ntreated SD	250ppm 500ppm 1000ppm 52.5ppm 210ppm 210ppm 250ppm 500ppm 1000ppm 52.5ppm 1005ppm 210ppm	*** etter in a column are not significant of essential len Rates and Means mortalit	IS ficantly different at LSD 5% ion oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.2±0.13 a (20%) 0.4±0.13 a (20%) 0.5±0.1 a (90%) 0.5±0.1 a (90%) 0.5±0.1 a (20%) 0.4±0.16 c (40%) 0.2±0.13 cd (20%) 0 d (0%) 1 a (100%) 0.337 9.766 *** a rd	ns elopment of C. carnea 3 ^{at} 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.a (0%) 0.256 0.576 ns 3 ^{at} 0.8±0.13 ab 0.6±0.16 bc 0.1±0.16 cd 0.3±0.15 cd 0.1±0.1 de (0 a (100%) 1 a (100%) 0.345 8.904 *** 2 nd +3 nd	*** after feeding its 2 nd ins 0% 0% 0% 0% 0% 0% 0% 0% 0% (80%) (60%) (40%) (30% 10%)	ns tar larvae on treated M. pers Until the rest of the test P. 0.1 ± 0.1 a (10%) 0 a (0%) 0.106 1 0.5016 bc (60%) 0.4 ± 0.16 bc (60%) 0.4 ± 0.16 bc (40%) 0.3 ± 0.15 cde (30%) 0.1 ± 0.1 dc (10%) $0 \in (0\%)$ 0.354 7.818 ***	***
4eans follow uble 3: Effic: eatments erron oil loser ntreated SD eatments erron oil loser ntreated SD eatments erron oil loser ntreated SD eatments eatments	250ppm 500ppm 1000ppm 22,5ppm 210ppm 210ppm 200ppm 500ppm 1005ppm 200ppm 105ppm 210ppm	*** etter in a column are not significant of essential len Rates and Means mortalit After 48 h	IS ficantly different at LSD 5% aon oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.3±0.15 a (20%) 0.2±0.13 a (20%) 0.4±0.13 a (20%) 0.5±0.16 bc (50%) 0.5±0.16 bc (50%) 0.4±0.16 c (40%) 0.2±0.13 cd (20%) 0 d (0%) 0.337 9.766 *** dividuals ± SEM	ns elopment of C. carnea 3^{ad} 0.1±0.1 a (1 0.256 0.576 ns 3^{ad} 0.8±0.13 ab 0.6±0.16 bc 0.1±0.1 dc (0 0.1±0.1 dc (0 0.1±0.1 dc (0 0.345 8.904 **** $2^{ad} + 3^{ad}$ 0.2±0.13 cd	*** after feeding its 2 nd ins 0% 20% 0% 0% 0% 0% 0% (80%) (60%) (60%) (40% (30%) 10%) (20%)	ns tar larvae on treated M. pers Until the rest of the test P. 0.1 ± 0.1 a (10%) 0 a (0%) 0.106 1 0.7 ± 0.15 ab (70%) 0.6 ± 0.16 bc (60%) 0.4 ± 0.16 bcd (40%) 0.3 ± 0.15 ccd (30%) 0.1 ± 0.1 dc (10%) 0.54 7.818 *** P. 0.1 ± 0.1 a (10%)	*** xicae under laboratory condit A 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
eatments	250ppm 500ppm 1000ppm 2.5ppm 2.5ppm 2.10ppm 2.10ppm 000ppm 1000ppm 1000ppm 2.5ppm 2.5ppm 2.5ppm 2.5ppm 2.5ppm 500ppm	*** etter in a column are not significant of essential len Rates and Means mortalit	IS ficantly different at LSD 5% ion oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.2±0.13 a (20%) 0.4±0.13 a (20%) 0.2±0.13 a (20%) 0.4±0.13 a (20%) 0.4±0.13 a (20%) 0.4±0.14 (00%) 0.5±0.16 bc (50%) 0.4±0.16 c (40%) 0.2±0.13 cd (20%) 0.4±0.16 c (40%) 0.337 9.766 *** dividuals ± SEM 3 ^{di} 2 ^{di} 0.1±0.1 a (10%) 0.2±0.13 a (20%)	ns elopment of C. carnea 3 ^d 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.3±0.13 a (0%) 0.576 ns 3 ^d 0.8±0.13 ab (0.4±0.16 bc (0.3±0.15 cd (0.1±0.16 bc (0.4±0.16 bc (0.0.4±0.16 bc (0.0.4±0.15 cd (0.0.4±0.15 cd (0.0.4±0.15 cd (0.0.4±0.15 cd (0.0.4±0.16 bc (*** after feeding its 2 nd ins 0%) 20%) 0%) 0%) 0%) 0%) 0%) (80%) (60%) (40%) (30%) 10%) (20%) (20%) (40%) (40%) (40%) (40%)	ns Until the rest of the test P. 0.1±0.1 a (10%) 0 a (0%) 0.15 ab (70%) 0.4±0.16 bcd (40%) 0.4±0.16 bcd (40%) 0.4±0.16 bcd (40%) 0.4±0.16 bcd (40%) 0.3±0.15 cde (30%) 0.1±0.1 a (10%) 0.354 7.818 *** P. 0.1±0.1 a (10%) 0 a (0%)	*** A 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
4eans follow uble 3: Effic: eatments emon oil loser ntreated SD eatments emon oil loser intreated SD eatments emon oil loser eatments eatments eatments emon oil	250ppm 500ppm 1000ppm 52.5ppm 210ppm 210ppm 200ppm 500ppm 105ppm 210ppm 210ppm	*** etter in a column are not significant of essential len Rates and Means mortalit	IS ficantly different at LSD 5% ion oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.2±0.13 a (20%) 0.4±0.16 c (40%) 0.5±0.16 bc (50%) 0.4±0.16 c (40%) 0.337 9.766 *** dividuals ± SEM 3 rd 0.1±0.1 a (10%) 0.2±0.13 a (20%)	ns elopment of C. carnea 3 ^{at} 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.a (0%) 0.256 0.576 ns 3 ^{at} 0.8±0.13 ab 0.6±0.16 bc 0.4±0.16 cd 0.1±0.1 de (0 e (0%) 1 a (100%) 0.345 8.904 **** 2 nd +3 nd 0.2±0.13 cd 0.2±0.13 cd 0.4±0.16 bc 0.6±0.16 bc	*** after feeding its 2 nd ins 0% 0% 0% 0% 0% 0% 0% (80%) (80%) (40%) (40%) (10%) (20%) (20%) (40%) (ns tar larvae on treated M. pers Until the rest of the test P. 0.1±0.1 a (10%) 0 a (0%) 0.106 1 ns Until the rest of the test P. 0.7±0.15 ab (70%) 0.6±0.16 bc (60%) 0.4±0.16 bc (40%) 0.3±0.15 cde (30%) 0.1±0.1 de (10%) 0 e (0%) 0.3±40.7 1 a (100%) 0.354 7.818 *** P. 0.1±0.1 a (10%) 0 a (0%) 0 a (0%)	***
Aeans follow able 3: Effic: emon oil loser ntreated SD ereatments emon oil loser ntreated SD	250ppm 500ppm 1000ppm 2250ppm 210ppm 210ppm 210ppm 500ppm 105ppm 210ppm 20ppm 200ppm 200ppm 52.5ppm 210ppm	*** etter in a column are not signification of essential len Rates and Means mortalit	IS ficantly different at LSD 5% aon oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.3±0.15 a (30%) 0.2±0.13 a (20%) 0.4±0.13 a (20%) 0.5±0.16 bc (50%) 0.4±0.16 c (40%) 0.5±0.13 a (20%) 0.4±0.16 c (40%) 0.4±0.16 c (40%) 0.4±0.16 c (40%) 0.4±0.16 c (40%) 0.337 9.766 *** dividuals ± SEM 3 rd 0.1±0.1 a (10%) 0.2±0.13 a (20%) 0.1±0.1 a (10%)	ns elopment of C. carnea 3^{ad} 0.1±0.1 a (1 0.4±0.16 (1 0.576 ns 3 rd 0.8±0.13 ab 0.6±0.16 bc 0.1±0.1 de (0.1±0.1 de (0.1±0.1 de (0.345 8.904 *** 2 rd +3 rd 0.2±0.13 cd 0.2±0.13 cd	*** after feeding its 2 nd ins 0% 20% 0% 0% 0% 0% 0% (80%) (60%) (60%) (30%) (30%) (20%) (20%	ns tar larvae on treated M. pers Until the rest of the test P. 0.1 ± 0.1 a (10%) 0 a (0%) 0.106 1 ns Until the rest of the test P. 0.7 ± 0.15 ab (70%) 0.6 ± 0.16 bc (60%) 0.3 ± 0.15 cd (30%) 0.1 ± 0.16 bc (40%) 0.3 ± 0.15 cd (30%) 0.1 ± 0.1 de (10%) $0 = 0(\%)$ $1 = (100\%)$ 0.354 7.818 **** P. 0.1 ± 0.1 a (10%) $0 = 0(\%)$ $0 = 0(\%)$	*** xicae under laboratory condit A. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
4eans follow uble 3: Effic: eatments emon oil loser ntreated SD eatments emon oil loser intreated SD eatments emon oil loser eatments eatments eatments emon oil	250ppm 500ppm 1000ppm 52.5ppm 210ppm 210ppm 200ppm 500ppm 105ppm 210ppm 210ppm	*** etter in a column are not significant of essential len Rates and Means mortalit	IS ficantly different at LSD 5% ion oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.2±0.13 a (20%) 0.4±0.16 c (40%) 0.5±0.16 bc (50%) 0.4±0.16 c (40%) 0.337 9.766 *** dividuals ± SEM 3 rd 0.1±0.1 a (10%) 0.2±0.13 a (20%)	ns elopment of C. carnea 3 ^{at} 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.a (0%) 0.256 0.576 ns 3 ^{at} 0.8±0.13 ab 0.6±0.16 bc 0.4±0.16 cd 0.1±0.1 de (0 e (0%) 1 a (100%) 0.345 8.904 **** 2 nd +3 nd 0.2±0.13 cd 0.2±0.13 cd 0.4±0.16 bc 0.6±0.16 bc	*** after feeding its 2 nd ins 0% 20% 0% 0% 0% 0% 0% (80%) (60%) (60%) (30%) (30%) (20%) (20%	ns tar larvae on treated M. pers Until the rest of the test P. 0.1±0.1 a (10%) 0 a (0%) 0.106 1 ns Until the rest of the test P. 0.7±0.15 ab (70%) 0.6±0.16 bc (60%) 0.4±0.16 bc (40%) 0.3±0.15 cde (30%) 0.1±0.1 de (10%) 0 e (0%) 0.3±40.7 1 a (100%) 0.354 7.818 *** P. 0.1±0.1 a (10%) 0 a (0%) 0 a (0%)	***
4eans follow able 3: Effic: eatments emon oil loser mon oil eatments emon oil loser mintreated SD eatments eatments eatments eatments eatments eatments eatmon oil loser eatments emon oil loser intreated	250ppm 500ppm 1000ppm 2.5ppm 2.5ppm 2.10ppm 2.10ppm 2.10ppm 0.00ppm 1000ppm 10.5ppm 2.5ppm 10.5ppm 2.5ppm 2.50ppm 2.50ppm 2.50ppm 10.5ppm 2.50ppm 10.5ppm 10.5ppm 10.5ppm	***	IS ficantly different at LSD 5% non oil and closer on the dev y ± SEM 2 rd 0.1±0.1 a (10%) 0.3±0.15 a (30%) 0.2±0.13 a (20%) 0.4±0.13 a (20%) 0.4±0.14 a (10%) 0.4±0.15 a (20%) 0.4±0.16 bc (50%) 0.5±0.16 bc (50%) 0.4±0.16 c (40%) 0.5±0.16 bc (50%) 0.4±0.13 a (20%) 0.337 9.766 *** adividuals ± SEM 3 rd 0.1±0.1 a (10%) 0.1±0.1 a (10%)	ns elopment of C. carnea 3^{at} 0.1±0.1 a (1 0.576 ns 3 ^{at} 0.576 ns 3 ^{at} 0.4±0.13 ab 0.6±0.16 bc 0.4±0.15 cd 0.1±0.1 s (1 0.1±0.1 s (100%) 0.345 8.904 *** 2 ^{at} +3 ^{at} 0.2±0.13 cd 0.4±0.16 bc 0.4±0.16 bc 0.4±0.16 bc 0.545	*** after feeding its 2 nd ins 0% 20% 0% 0% 0% 0% 0% (80%) (60%) (60%) (30%) (30%) (20%) (20%	ns Until the rest of the test P. 0.1 ± 0.1 a (10%) 0 a (0%) 0.106 1 ns	*** A. (0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%)
ble 3: Effic: mon oil oser itreated iD eatments mon oil oser itreated iD oser itreated iD	250ppm 500ppm 1000ppm 2.5ppm 2.5ppm 2.10ppm 2.10ppm 2.10ppm 0.00ppm 1000ppm 10.5ppm 2.5ppm 10.5ppm 2.5ppm 2.50ppm 2.50ppm 2.50ppm 10.5ppm 2.50ppm 10.5ppm 10.5ppm 10.5ppm	*** etter in a column are not signification of essential len Rates and Means mortalit 2 ^{ad} 0 d (0%) 0.1±0.1 cd (10%) 0.2±0.13 cd (20%) 0.4±0.16 bc (40%) 0.2±0.13 cd (20%) 0.4±0.16 bc (40%) 0.4±0.16 bc (40%) 0.4±0.13 cd (20%) 0.4±0.13 bc (40%) 0.4±0.14 bc (40%) 0.4±0.13 bc (40%) 0.4±0.13 bc (40%) 0.4±0.13 cd (20%) 1 a (100%) 0.3±0.13 bc (40%) 0.4±0.13 cd (20%) 1 a (100%) 0.3±0.13 cd (20%) 0.4±0.14 (10%) 0.5±0.16 bc (50%) 0.4±0.16 bc (50%)	IS ficantly different at LSD 5% ion oil and closer on the dev y ± SEM 2 nd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.2±0.13 a (20%) 0.4±0.16 c (40%) 0.5±0.16 bc (50%) 0.4±0.16 c (40%) 0.337 9.766 *** dividuals ± SEM 3 rd 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.1±0.1 a (10%) 0.1±0.1 a (10%)	ns elopment of C. carnea 3^{at} 0.1±0.1 a (1 0.2±0.13 a (0.1±0.1 a (1 0.3±0.1 a (1 0.4±0.15 a (1 0.576 ns 3 ^{at} 0.8±0.13 ab (0.6±0.16 bc (0.4±0.16 bc (0.4±0.16 bc (0.4±0.16 bc (0.0±0.15 cd (0.1±0.1 de (0.0±0.15 cd (0.1±0.1 de (0.0±0.15 ab (0.0±0.13 cd (0.4±0.16 bc (0.6±0.13 cd (0.4±0.16 bc (0.6±0.13 cd (0.4±0.15 bc (0.6±0.15 ab (0.7±0.13 cd (0.4±0.15 bc (0.6±0.15 ab (0.7±0.15 ab (0.9±0.1 a (9) (0.0±0.15 ab (0.9±0.15 a	*** after feeding its 2 nd ins 0% 20% 0% 0% 0% 0% 0% (80%) (60%) (60%) (30%) (30%) (20%) (20%	ns Until the rest of the test P. 0.1±0.1 a (10%) 0 a (0%) 0.15 ab (70%) 0.5±0.15 ab (70%) 0.4±0.16 bc (60%) 0.4±0.16 bc (40%) 0.3±0.15 cde (30%) 0.1±0.1 a (10%) 0 a (0%) 0.3±4 0.1±0.1 a (10%) 0 a (0%)	*** xicae under laboratory conditi A. 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Table 2: Efficacy of different concentrations of essential lemon oil and closer on the development of *C. carnea* after feeding its 1^a instar larvae on treated *M. persicae* under laboratory conditions

^aMeans followed by the same letter in a column are not significantly different at LSD 5%

Acad. J. Entomol., 13 (2): 41-49, 2020

		Rates and Means mortality =	- SEM		
		After 48 h		Until the rest of the test	
Treatments		3 rd	3 rd	Р.	A.
Lemon oil	250ppm	0 c (0%)	0 b (0%)	0 a (0%)	0 (0%)
	500ppm	0 c (0%)	0.1±0.1 ab (10%)	0.1±0.1 a (10%)	0 (0%)
	1000ppm	0.1±0.1 c (10%)	0.2±0.13 ab (20%)	0.1±0.1 a (10%)	0 (0%)
Closer	52.5ppm	0.2±0.1 bc (20%)	0.1±0.1 ab (10%)	0.1±0.1 a (10%)	0 (0%)
	105ppm	0.5±0.16 ab (50%)	0.1±0.1 ab (10%)	0 a (0%)	0 (0%)
	210ppm	0.7±0.15 a (70%)	0.3±0.15 a (30%)	0 a (0%)	0 (0%)
Untreated		0 c (0%)	0 b (0%)	0 a (0%)	0 (0%)
LSD		0.300	0.284	0.185	`
F		6.929	1.125	0.666	
Р		***	***	ns	
		Rates and Means survival \pm	SEM		
		After 48 h	Until the rest of the test		
Freatments		 3 rd	3 rd	P.	A.
emon oil	250ppm	1 a (100%)	1 a (100%)	1 a (100%)	1 a (100%)
	500ppm	1 a (100%)	0.9±0.1 a (90%)	0.8±0.13 ab (80%)	0.8±0.13 ab (80%
	1000ppm	0.9±0.1 a (90%)	0.7±0.15 ab (70%)	0.6±0.16 bc (60%)	0.6±0.16 bc (60%
Closer	52.5ppm	0.8±0.13 ab (80%)	0.7±0.15 ab (70%)	0.6±0.16 bc (60%)	0.6±0.16 bc (60%
	105ppm	0.5±0.16 bc (50%)	0.4±0.16 b (40%)	0.4±0.16 c (40%)	0.4±0.16 c (40%)
	210ppm	0.3±0.15 c (30%)	0 c (0%)	0 d (0%)	0 d (0%)
Untreated		1 a (100%)	1 a (100%)	1 a (100%)	1 a (100%)
LSD		0.300	0.308	0.334	0.334
7		6.929	11.12	9.0	9.0
Р		***	***	***	***
		Rates and Means failed indiv	viduals ± SEM		
Freatments		3 rd	P.	From the 3 rd instar to adult	
Lemon oil	250ppm	0 c (0%)	0 a (0%)	0 d (0%)	
	500ppm	0.1±0.1 c (10%)	0.1±0.1 a (10%)	0.2±0.13 cd (20%)	
	1000ppm	0.3±0.15 bc (30%)	0.1±0.1 a (10%)	0.4±0.16 bc (40%)	
Closer	52.5ppm	0.3±0.15 bc (30%)	0.1±0.1 a (10%)	0.4±0.16 bc (40%)	
	105ppm	0.6±0.16 b (60%)	0 a (0%)	0.6±0.16 b (60%)	
	210ppm	1 a (100%)	0 a (0%)	1 a (100%)	
Untreated		0 c (0%)	0 a (0%)	0 d (0%)	
LSD		0.308	0.185	0.334	
F		11.12	0.676	9.00	
Р		***	ns	***	

Table 4. Efficacy of different concentrations of essential lemon oil and closer on the development of *C. carnea* after feeding its 3rd instar larvae on treated *M. persicae* under laboratory conditions
Rates and Means mortality + SEM

*Means followed by the same letter in a column are not significantly different at LSD 5%

Table 5:	Mean durations of C. carnea during their development after feeding its 1st instar larvae on M. persicae treated with different concentrations of essential
	lemon oil and closer under laboratory conditions

	Mean durations of the developmental stage in $(days) \pm SEM$						
Treatments		The 1 st instar	The 2 nd instar	The 3 rd instar	The larval stage	The pupal stage	From the 1 st instar to adult
Lemon oil	250ppm	1.6 ±0.37 ab	1.9 ± 0.53 b	$4.6 \pm 1.26 \text{ b}$	7.9 ± 2.16 b	3.7 ± 1.24 b	10.3 ± 3.44 b
	500ppm	1.1 ±0.38 bc	1.3 ± 0.54 bc	$2.2 \pm 1.12 \text{ c}$	3.8 ± 1.73 c	2.1 ± 1.07 bc	5.9 ± 2.67 c
	1000ppm	0.8 ±0.33 c	$0.6\pm0.4\ cd$	$1.5\pm1.002~\text{c}$	$2.5\pm1.67~\text{c}$	1.4 ± 0.93 c	3.9 ± 2.6 c
Closer	52.5ppm	0.5 ±0.27 cd	$0.6 \pm 0.4 \text{ cd}$	0.9 ± 0.9 c	$1.4 \pm 1.4 c$	0.7 ± 0.7 c	2.1 ± 2.1 c
	105ppm	0 d	0 d	0 c	0 c	0 c	0 c
	210ppm	0 d	0 d	0 c	0 c	0 c	0 c
Untreated		2.2 ± 0.13 a	3.2 ± 0.13 a	8.4 ± 0.2 a	13.8 ± 0.2 a	7.3 ± 0.2 a	21.1 ± 0.2 a
LSD		0.738	1.015	2.317	3.767	2.158	5.884
F		9.788	10.330	13.718	14.460	11.663	13.239
Р		***	***	***	***	***	***

^aMeans followed by the same letter in a column of different treatments are not significantly different at LSD 5%

		Mean durations of the developmental stage in $(days) \pm SEM$						
Treatments		The 2 nd instar	The 3 rd instar	The 2 nd + 3 rd instars	The pupal stage	From the 2 nd instar to adult		
Lemon oil	250ppm	2.7 ±0.33 a	6.3 ± 1.08 ab	8.8 ± 1.48 ab	5.3 ± 1.17 ab	13.1 ± 2.87 ab		
	500ppm	00ppm 2.4 ±0.43 ab	4.6 ± 1.26 bc	6.5 ± 1.77 bc	4.4 ± 1.2 bc	10.9 ± 2.97 bc		
	1000ppm	1.4 ±0.48 bc	3.1 ± 1.27 cd	$4.3 \pm 1.76 \text{ cd}$	2.9 ± 1.19 bcd	7.2 ± 2.93 bcd		
Closer	52.5ppm	1.1 ±0.46 c	2.3 ± 1.17 cde	3.2 ± 1.63 cde	2.2 ± 1.12 cde	5.4 ± 2.75 cde		
	105ppm	0.6 ±0.4 cd	0.8 ± 0.8 de	1.1 ± 1.1 de	$0.7 \pm 0.7 de$	1.8 ± 1.8 de		
	210ppm	0 d	0 e	0 e	0 e	0 e		
Untreated		3.1 ±0.1a	8 ± 0.21 a	11.1 ± 0.18 a	7.7 ± 0.21 a	18.8 ± 0.25 a		
LSD		1.013	2.704	3.750	2.624	6.455		
F		10.290	9.167	9.258	8.425	8.327		
Р		***	***	***	***	***		

Table 6: Mean durations of *C. carnea* during their development after feeding its 2nd instar larvae on *M. persicae* treated with different concentrations of essential lemon oil and closer under laboratory conditions

^aMeans followed by the same letter in a column of different treatments are not significantly different at LSD 5%

Table 7: Mean durations of *C. carnea* during their development after feeding its 3rd instar larvae on *M. persicae* treated with different concentrations of essential lemon oil and closer under laboratory conditions

		Mean durations of the developmental stage in $(days) \pm SEM$						
Treatments		The 3 rd instar	The pupal stage	From the 3 rd instar to adul				
Lemon oil	250ppm	7.8 ± 0.13 a	$7.4 \pm 0.2 \text{ a}$	15.2 ± 0.13 a				
	500ppm	6.6 ± 0.76 ab	6.1 ± 1.04 ab	$12.1 \pm 2.02 \text{ ab}$				
	1000ppm	$4.8 \pm 1.07 \text{ bc}$	4.5 ± 1.23 bc	8.8 ± 2.4 bc				
Closer	52.5ppm	5.2 ± 1.14 b	$4.7 \pm 1.29 \text{ bc}$	9.2 ± 2.51 bc				
	105ppm	2.9 ± 1.19 c	3.2 ± 1.31 c	$6.1 \pm 2.5 \text{ c}$				
	210ppm	0 d	0 d	0 d				
Untreated		8.2 ± 0.25 a	7.6 ± 0.2 a	15.8 ± 0.25 a				
LSD		2.273	2.635	5.005				
F		12.901	8.046	9.439				
Р		***	***	***				

^a Means followed by the same letter in a column of different treatments are not significantly different at LSD 5%

duration of its developmental stages at the both treatments used with its different concentrations with the untreated except the oil at the used of 250 ppm where no significant differences were found (Tables 4 and 7).

CONCLUSION

In conclusion, the previous findings clearly indicated diversity in the mortality rates among different concentrations where, although closer was more impact than lemon oil on *C. carnea* larvae which was fed on treated aphids, it was noticed that the high concentrations of the oil were most impact on the predator compared with the low concentrations, particularly in the youth instars of larvae predator which appeared more sensitive than the older one when fed on treated aphids, where the 1st instar larvae of the predator proved to be very susceptible than its 3rd instars which showed to be most tolerance. Consequently, it seems that degree of

susceptibility differ by the several larval stage of the predator. As for *M. persicae*, findings showed that both lemon oil and closer achieved satisfied results in its managed.

Finally, lemon oil seemed to be less sharp on *C. carena* compared with closer which appeared not safe enough towards the predator. The use of sulfoxaflor in IPM strategies should be considered when either of biological control agents is released, because of the toxic behavior observed under laboratory conditions; moreover it is toxic to impollinator insects [40]. Particularly, since their presence in the field is dependent upon the lack of disruption due to different insecticides [41]. But in general it still not assured that oil extracts are completely harmless to predators, where Khan *et al.* [42] observed relatively high mortality of second instar larvae of *C. carnea* which reached to 100% by the use of high concentration (1.0%) from neem oil compared to low concentrations used. Therefore, based on the current results the different

impacts among concentrations used on the various instars of the predator larvae must be concerned before recommend it for IPM program. Nevertheless, it must be mentioned also that the impacts obtained in laboratory are often more severe than in the field which may be less in view of many different considerations [38-39]. So, the side effects on predators still needs to more future experimentation and investigation, for more review about the possibility harmony between using of plant oils and releasing of *C. carnea* against the target insect.

REFERENCES

- Parker, B.L., R.H. Booth and J. Brayns, 1983. Methamidophos, solelhion, phenthoate and R & H 0994 for control of *Myzus persicae* (Sulzer) on potato tubers in Peru. Am. Potato J., 60: 55-59.
- Van Emden, H.F., V.F. Eastop, R.D. Hughes and M.J. Way, 1969. The ecology of *Myzus persicae*. Annu. Rev. Entomol., 14: 197-270.
- Al-Antary, T.M. and A. Al-Momany, 1990. Pests of garden and home. 1sted. Cairo: Dar Al Arabiah for Publication and Distribution.
- Zhou, B.G., S. Wang, T.T. Dou, S. Liu, M. Ye Li, R.M. Hua, S.G. Li and H.F. Lin, 2016. Aphicidal activity of *Illicium verum* fruit extracts and their effects on the acetylcholinesterase and glutathione S-transferases activities in *Myzus persicae* (Hemiptera: Aphididae). J. Insect Sci., 16(1): 11.
- Namba, R. and E.S. Sylvester, 1981. Transmission of cauliflower mosaic virus by the green peach, turnip, cabbage and pea aphids. J. Econ. Entomol., 74(5): 546-551.
- Fishel, F.M., 2005. Pesticide Toxicity Profiles. Gainesville: Univ. Florida Inst. Food & Agric. Sci., pp: 123-139.
- Bass, C. and L.M. Field, 2011. Gene amplification and insecticide resistance. Pest Manag. Sci., 67: 886-890.
- Bass, C., A.M. Puinean, C.T. Zimmer, I. Denholm, L.M. Field, S.P. Foster, O. Gutbrod, R. Nauen, R. Slater and M.S. Williamson, 2014. The evolution of insecticide resistance in the peach potato aphid, *Myzus persicae*. Insect Biochem. Mol. Biol., 51: 41-51.
- Zhang, Q., Z. Li, C.H. Chang, J.L. Lou, M.R. Zhao and C. Lu, 2018. Potential human exposures to neonicotinoid insecticides: a review. Environ. Pollut., 236: 71-81.
- Abdel Agder, H., 2000. Effects of some insecticides on three predators in the Sudan IOBC/ WPRS Bull., 23(9): 137-140.

- McEwen, P.K., T.R.R. New and A. Whittington, 2001. Lacewings in the crop management. Cambridge Univ. Press, Cambridge.
- Thompson, W.T., 1992. A worldwide guide to beneficial animals used for pest control purposes. Thompson Publications, Fresno, CA.
- Pavela, R., 2017. Extract from the roots of Saponaria officinalis as a potential acaricide against Tetranychus urticae. J. Pest Sci., 90: 683-692.
- Weinzierl, R. and T. Henn, 1991. Alternatives in insect management: biological and bioregional approaches. North Central Regional Extension Publication 401. Cooperative Extension Service, University of Illinois at Urbana-Champaign, pp: 73.
- Regnault-Roger, C., C. Vincent and J.T. Arnason, 2012. Essential oils in insect control: low-risk products in a high-stakes world. Annu. Rev. Entomol., 57: 405-424.
- Harwood, S.H., A.F. Moldenke and R.E. Berry, 1990. Toxicity of peppermint monoterpenes to the variegated cutworm (Lepidoptera: Noctuidae). J. Econ. Entomol., 83(5): 1761: 1767.
- Al-Antary, T.M., I.H. Belghasem and S.A. Araj, 2017

 a. Evaluation of Eco- Friendly lemon oil against the green peach aphid *Myzus persicae* Sulzer (Homoptera: Aphididae) using four solvents. Fresenius Environ. Bull., 26(12 A): 8298-8303.
- Babcock, J.M., C.B. Gerwick, J.X. Huang, M.R. Loso, G. Nakamura, S.P. Nolting, R.B. Rogers, T.C. Sparks, J. Thomas, G.B. Watson and Y. Zhu, 2011. Biological characterization of sulfoxaflor, a novel insecticide. Pest Manag. Sci., 67(3): 328-334.
- Opender, K., W. Suresh and G.S. Dhaliwal, 2008. Essential oils as green pesticides: potential and constraints. Biopestic. Int., 4(1): 63-84.
- Abbott, W.S., 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18(2): 265-267.
- Finney, D.J., 1971. Probit analysis. Cambridge Univ., London, pp: 333.
- Sun, Y.P., 1950. Toxicity index an improved method of comparing the relative toxicity of insecticides. J. Econ. Entomol., 43: 45-53.
- 23. CoHort Software, 2004. CoStat. www.cohort.com. Monterey, California, USA.
- Bedford, I.D., R.W. Briddon, J.K. Brown, R.C. Rosell and P.G. Markham, 1994. Geminivirus transmission and biological characterisation of *Bemisia tabaci* (Gennadius) biotypes from different geographic regions. Ann. Appl. Biol., 125: 311-325.

- Barrania, A.A., M.A. El-Bessomy and A.T. El-Masry, 2019. Field Efficiency of some New insecticides against some sucking insects at cucumber plants. Alexandria Science Exchange Journal, 40(2): 327-332.
- Convertini, S., M. Cioffi, E. Tescari, A. Fenio and L. Bacci, 2018. ISOCLASTTM: Attività nei confronti di *Aphis gossipii* Glover su cucurbitaceae in pieno campo Atti Giornate Fitopatologiche 2018.
- Tang, Q.L., M. Xiang, H.M. Hu, C.J. An and X.W. Gao, 2015. Evaluation of Sublethal Effects of Sulfoxaflor on the Green Peach Aphid (Hemiptera: Aphididae) using Life Table parameters. J. Econ. Entomol., 108: 2720-2728.
- Digilio, M.C., E. Mancini, E. Voto and V. De Feo, 2008. Insecticidal activity of Mediterranean essential oils. J. Plant Interact., 3(1): 17-23.
- Al-Antary, T.M., I.H. Belghasem and S.E.A. Araj, 2017b. Effect of mint oil against the green peach aphid *Myzus persicae* Sulzer (Homoptera: Aphididae) using four solvents. Advances in Environmental Biology, 11(1): 61-67.
- Akhtar, Y., Y.R. Yeoung and M.B. Isman, 2007. Comparative bioactivity of selected extracts from meliaceae and some commercial botanical insecticides against two noctuid caterpillars, *Trichoplusia ni* and *Pseudaletia unipuncta*. Phytochemistry Reviews, 7: 77-88.
- Hori, M., 1999. Antifeeding, settling inhibitory and toxic activities of labiate essential oils against the green peach aphid, *Myzus persicae* (Sulzer) (Homoptera: Aphididae). Appl. Entomol. Zool., 34: 113-118.
- Prates, H.T., J.P. Santos, J.M. Waquil, J.D. Fabris, A.B. Oliveira and J.E. Forster, 1998. Insecticidal activity of monoterpenes against *Rhyzopertha dominica* (F.) and *T. castaneum* (Herbst). J. Stored Prod. Res., 34: 243-249.
- 33. Coats, J.R., L.L. Karr and C.D. Drewes, 1991. Toxicity and neurotoxic effects of monoterpenoids: in insects and earthworms, pp: 305-316. In P. A. Hedin [ed.], Naturally occurring pest bioregulators. ACS Symposium Series, American Chemical Society, Washington, DC.
- 34. Ibrahim, M.A., P. Kainulainen, A. Aflatuni, K. Tiilikkala and J.K. Holopainen, 2001. Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: with special reference to limonene and its suitability for control of insect pests (Review). Agric. Food Sci., in Finland, 10: 243-259.

- Nasreen, A., G. Mustafa and M. Ashfaq, 2005. Mortality of *Chrysoperla carnea* (Stephens) (Neuroptera: Chrysopidae) after exposure to some insecticides; laboratory studies. South Pacific Studies, 26(1): 1-6.
- Ahmad, M., H.R. Oßiewatsch and T. Basedow, 2003. Effects of neem-treated aphids as food/hosts on their predators and parasitoids. J. Appl. Entomol., 127: 458-464.
- 37. Gatineau, F., F. Bonnot, T.T. Hong Yen, D.H. Tuan, N.D. Tuyen and N.T. Ngoc Truc, 2010. Effects of imidacloprid and fenobucarb on the dynamics of the psyllid *Diaphorina citri* Kuwayama and on the incidence of Candidatus *Liberibacter asiaticus*. Fruits, 65(4): 209-220.
- 38. Vogt, H., U. Handel and E. Vinuela, 1997. Field investigations on the efficacy of Neem Azal-T/S against *Dysaphis plantaginea* (Passerini) (Homoptera: Aphididae) and its effects on larvae of *Chrysoperla carnea*Stephens (Neuroptera: Chrysopidae). In: Practice Orientated Results on Use and Production of Neem-Ingredients and Pheromones. Ed. By Kleeberg, H.; Zebitz, C. P. W. Proc. 5th Workshop, Wetzlar, pp: 105-114.
- Herrmann, P., 2001. Nebenwirkungen des pflanzlichen Insektizids Neem Azal-T/S auf einige im Obstbau relevante Nutzarthropoden. Thesis, Univ. Hohenheim, Hohenheim.
- 40. Bacci, L., S. Convertini and B. Rossaro, 2018. A review of sulfoxaflor, a derivative of biological acting substances as a class of insecticides with a broad range of action against many insect pests. J. Entomol. Acarol. Res., 50: 7836.
- Mansoor, M.M., A.B.M. Raza, N. Abbas, M.A. Aqueel and M. Afzal, 2017. Resistance of green lacewing, *Chrysoperla carnea* Stephens to nitenpyram: Cross-resistance patterns, mechanism, stability and realized heritability. Pesticide Biochemistry and Physiology, 135: 59-63.
- Khan, I., M. Zahid and G.Z. Khan, 2012. Toxicity of Botanic and Synthetic Pesticide Residues to Citrus Psyllid *Diaphorina citri* Kuwayama and *Chrysoperla carnea* (Stephens). Pak. J. Zool., 44(1): 197-201.