Information Condition of the Liver of Dogs at Pathologies at the Reproductive Period of Ontogenesis

D.A. Areshidze, L.D. Timchenko and M.A. Kozlova

Moscow State Regional University, Center of Cell Biology and Applied Biotechnology, Moscow, Russian Federation

Institute of Applied Biotechnology Department of the Living Systems of the North Caucasus Federal University, Stavropol, Russian Federation

Abstract: In the study the method of assessing adaptive and regenerative opportunities of the liver by assessing of its information state was applied. The research revealed a change in the nature of the information state of the tissue of the liver at hepatoadenoma, liver cancer and non-cancer pathologies. Discovered changes of the information parameters characterizing the liver, indicate various kinds of adaptive processes in the organ. It is shown that at the non-neoplastic diseases of the liver, tissue system uses the existing structural adaptation resources, but it tends to collapse. Changes of the information parameters were more pronounced at malignant disease than at hepatoadenoma, it is revealed reduction of system reliability to negative value. When tumors of the liver, tissue system is simplified, ordered and directed the growth and increase the reliability, such system complicates the possibility of successful treatment of the organ in such pathologies.

Key words: Entropy - Biosystem - Liver Pathology - Adaptation

INTRODUCTION

Liver diseases in dogs can have very diverse symptoms, as liver is an important intermediate organ of the metabolism which is involved in many physiological processes of an organism (digestion, detoxification and hemopoiesis).

About 80% of cases of hepatopathy are associated with kidney diseases of gastrointestinal tract, pancreas and the central nervous system. Liver disease may be primary or secondary. The liver has high adaptation reserves and regenerative abilities. The liver dysfunctions in the majority of cases are subclinical, with no pronounced symptoms and because of the regenerative functions of the organ it covers quickly without the need of medical intervention.

The defeat of 70-80% of functional liver cells results in hepatic insufficiency. Such diseases can be acute or chronic. If at a disease of a liver doesn't come recovery, it develops fibrosis or cirrhosis of liver and irreversible terminal hepatic insufficiency [1, 2].

Primary liver neoplasmas in the dogs are infrequent, with an estimated prevalence in necropsy studies in 0.6-2.6% of cases. Liver metastases in dogs are much more frequent than primary hepatic tumors and affect 30.6-36.8% from all animals with non-hepatic neoplasms. The spleen, pancreas and gastrointestinal tract are the most common locations of primary tumors implicated in such metastases. Metastatic disease is more common and occurs two and a half times more frequently than primary liver tumors in dogs, particularly from primary cancer of the spleen, pancreas and gastrointestinal tract [3, 4]. The liver can also be involved in other malignant processes.

The four basic categories of primary malignant hepatic tumors in dogs are: hepatocellular, bile duct, neuroendocrine (or carcinoid) and mesenchymal. There are three morphologic types of these primary hepatic tumors: massive, nodular and diffuse. Massive liver tumors are defined as large, solitary masses confined to a single liver lobe; nodular tumors are multifocal and involve several liver lobes; and diffuse involvement may...
represent the final stage of neoplastic disease with multifocal or coalescing nodules in all liver lobes or diffuse effacement of the hepatic parenchyma. The prognosis for cats and dogs with liver tumors is determined by histology and morphology. The prognosis is good for massive hepatocellular carcinoma (HCC) and for benign tumors because complete surgical resection is possible and biologic behavior of these tumors is relatively nonaggressive. In contrast, the prognosis is adverse for dogs with malignant tumors other than massive HCC [5-8].

Changes in pre-and postnatal development of mammals in normal and pathological conditions are increasingly considered as a phenomenon caused by the dynamics of adaptation and regeneration capabilities of living systems at different hierarchical levels [9-12]. To assess the parameters of ability of adaptation and regeneration proposed to use Shannon entropy and its derivatives of tissue parameters. Information state of the tissue is an indicator of adaptive capacity of biosystem [13-15].

Several authors do not exclude the existence of an interrelation between change of information state of system and the development of pathological processes in the period of appreciable senile changes [16-22]. It is shown that in case of damage and adaptation responses in biological systems occurs a redistribution of energy-flow accompanying the process of restructuring the tissue. Small numbers of publications examine the information condition of organs and tissues [23-27]. From the above, it seems actual to study the information status of the liver as an organ providing homeostasis in dogs at normal and at a hepatocellular adenoma (HCA), hepatocellular carcinoma (HCC) and non-cancer diseases.

MATERIALS AND METHODS

Animals: We examined H&E histological slides of a dog liver with various pathological processes. Age of the animals was 5-7 years. The diagnosis is based on data of postmortem and histological examination.

We investigated the following slides:
- Normal liver (n = 150);
- At cirrhosis (n = 88);
- At chronic hepatitis (CH) (n = 80);
- At HCA (n = 79);
- At HCC (n = 87).

Studies Of the Information Condition of the System of the Liver: To determine the information status at focal lesions of the liver, pieces of tissue were taken from the least altered areas on the border of macroscopically distinct lesions. In case of visual homogeneity of organ material was taken from any part of it.

Based on the concept of information in a tissue system like the displaying of the diversity of morphology and function of the process, for assessing the information status of organs and tissues have been proposed and tested the such indicators - information morphological capacity \((H_{\text{max}}) \), information morphological entropy \((H) \), information morphological organization \((S) \), the relative morphological entropy \((h) \) and redundancy \((R) \) [28-31].

In this case, the baseline characteristics, which were used to calculate these parameters, can vary widely (the linear dimensions of the structures, their number, etc.). In our study was defined the volume of the nuclei of hepatocytes. Volume of the nuclei of hepatocytes was measured by image analyzer "Videotest" at H&E slides.

It was carried out a breakdown of the aggregate of the measured volumes of nuclei of hepatocytes into classes.

Information morphological capacity \(H_{\text{max}} \) which means the maximum structural diversity, was calculated by formula [28-31]:

\[
H_{\text{max}} = \log n,
\]

where \(n \) - number of classes of volumes of hepatocyte nuclei. This parameter is defined by a particular characteristic (hepatocyte nuclei volume) remains constant for a tissue or organ described in the normal and pathologies.

Next, we made the calculation of the real structural diversity \(H \). Real structural diversity is the parameter that clearly illustrates the degree of determinism of the morph functional system in time and space [28-31]. The calculation was made using the formula:

\[
H = -\sum P \log P,
\]

where \(\Sigma P \) is the sum of probabilities of stay of the measured parameter of cells in one of existing classes; \(\log P \) is the logarithm of the probability of staying in one of the possible classes. In this case, the value of \(P \) is defined as the classical probability [5].

Knowing the maximum and actual structural diversity, we can calculate the organization of the system \((S) \), the difference between the maximum possible and the real structural diversity (implemented structural diversity).
This parameter, in our opinion, displays the state of the system adaptability to date. To determine the value of this parameter was used the formula [28-31]:

$$S = H_{\text{max}} - H.$$

It is necessary to consider that when $H = H_{\text{max}}$, the system is deterministic, but such relation to the vast majority of permissible is possible only in theory. Then we determined the coefficient of relative entropy of the system, or (the coefficient of compression of information) h by Avtandilov and Avtandilov and Areshidze et al. [28-31]:

$$h = \frac{H}{H_{\text{max}}}.$$

High levels of relative morphological entropy provide an evidence of the disorder of the system and significantly reducing of its structural integrity [18-20].

The coefficient on the relative organization of the system (redundancy factor) R is given by Avtandilov and Areshidze et al. [28-31]:

$$R = \left(\frac{S}{H_{\text{max}}}\right) \times 100\%.$$

With these data, the researcher has the opportunity to calculate the equivocation of the system (the value of reliability) e [28-31]:

$$e = \frac{(H_p - H_e)}{H_{\text{max}}},$$

where H_e - real structural diversity in normal, H_p - real structural diversity in pathology.

Statistical Analysis: Values are expressed as mean (± SD). The statistical analysis was performed using one-way analysis of variance (ANOVA). The statistical difference determined using repeated measures analysis of variance or paired Student t-tests. A p value of < 0.05 was considered statistically significant.

RESULTS AND DISCUSSION

Liver of healthy dogs was characterized by such parameters: H_{max} was 3.32 ± 0.0003 bit, rate of H was equal to 2.552 ± 0.014 bits, respectively, S was 0.7658 ± 0.0014 bit, h was 0.7687 ± 0.0044 bit (Fig. 1), R equaled $23.13 \pm 0.45\%$ (Fig. 2).

![Fig. 1: Magnitude of the H, S and h in normal liver of dogs, liver with HCA, HCC and non-cancer diseases. Statistical significance was assessed using student t-test. *** indicates $P < 0.001$, ** indicates $P < 0.01$, * indicates $p < 0.05$.](image1)

![Fig. 2: Value of the R index at the liver in normal liver of dogs, liver with HCA, HCC and non-cancer diseases. Statistical significance was assessed using student t-test. *** indicates $P < 0.0005$, ** indicates $P < 0.005$, * indicates $p < 0.05$.](image2)
At HC the value of H increased to 2.680±0.077 bits, S reduces the 0.638±0.077 bits, h is increased to 0.8078±0.0057 bit and R reduced to 19.22±0.57%. The value of e was 0.130±0.017.

A character of difference from the norm of the information of the dog liver with cirrhosis was similar. H is 2.707±0.018 bits, S was equal to 0.6130±0.018 bits, h reached 0.8154±0.0056 bit, R reduced to 18.46±0.56% and e was 0.1550±0.013.

At HCA we observed decrease of H concerning to the normal to 2.391±0.013 bits. Accordingly, the value of S was higher than normal - 0.929±0.013 bits, h reduced to 0.7202±0.004 and R increased to 27.98±0.4%. Index e was -0.161±0.009.

At HCC the value of H concerning to the norm dropped substantially, making 2.151±0.013 bits, the value of S increases significantly to 1.169±0.013 bits, h reduced to 0.6479±0.004 bits, R increases up to 35.21±0.40% and e was -0.401±0.023.

Thus, changes of the information parameters characterizing the liver indicate various kinds of adaptive processes in the organ.

At the non-neoplastic diseases of the liver it was observed the increase of the H, which means an increase of the entropy of system, in parallel with this process it was observed an increase of information compression, as evidenced by increase of coefficient of the relative entropy of the system (h). In addition, it was observed the decrease of the structural diversity of the system (S) and the coefficient of excess (R), which mean the number of redundant structural elements of the system.

Changes of information system at a cancer of a liver were different. In particular, there was a decrease of both total and relative entropy of the system against the increase of its structural diversity and the coefficient of redundancy. At the same time, changes of the information parameters were less pronounced at hepatoadenoma than at malignant disease.

CONCLUSIONS

Thus, at non-neoplastic diseases of the liver, tissue system uses existing structural adaptation resources, the level of structural diversity of the system reduces, the number of redundant structural elements is also reducing and it is a tendency to destroying the integrity of the system. At tumors there is a simplification of the information system of the liver and as a consequence, increase of its reliability, ordering, is observed the tendency to system growth, which may testify to the compensatory-adaptive reactions in the organ.

At tumors the liver tissue system is simplified, ordered and directed to the growth and decrease of the reliability of such system complicates the possibility of successful treatment of the organ in such pathologies.

ACKNOWLEDGMENTS

This work was supported by Moscow state regional university.

REFERENCES

