Antimicrobial and Cytotoxic Effects of Garcinia Indica Fruit Rind Extract

K.N. Varalakshmi, C.G. Sangeetha, A.N. Shabeena, S.R. Sunitha and J. Vapika

Department of Biotechnology, Centre for Post-Graduate Studies, Jain University, 18/3, 9th Main, III Block, Jayanagar, Bangalore - 560 011

Abstract: Garcinia is a large genus of polygamous trees or shrubs, distributed in the tropical Asia, Africa and Polynesia and is a rich source of bioactive molecules including xanthones, flavonoids, benzophenones, lactones and phenolic acids. In the present study, an attempt was made to evaluate the antimicrobial properties of Garcinia indica on certain microbes and cytotoxic properties of Garcinia indica on Balb/c 3T3 mouse fibroblasts. The minimum inhibitory concentrations of the water extract against bacteria were, 0.5mg/ml in Escherichia coli, 5mg/ml in both Bacillus subtilis and Enterobacter aerogenes and 50mg/ml in Staphylococcus aureus. The minimum inhibitory concentrations against fungi were 50mg/ml for both Candida albicans and Penicillium sp. Garcinia indica fruit rind extract showed inhibitory effect on cultured 3T3 mouse fibroblasts. The cell concentration decreased with increasing concentration of the extract. The G. indica extract has both antifungal and antibacterial properties and has a potential for use as a biopreservative in food applications and therapeutic agent in cancer treatment.

Key words: Garcinia indica • Balb/c mouse fibroblasts • Antifungal • Antibacterial • Cytotoxic • Minimum inhibitory concentration

INTRODUCTION

Finding healing powers in plants is an ancient idea. People on all continents have long applied poultices and imbied infusions of hundreds, if not thousands, of indigenous plants, dating back to prehistory. There is evidence that Neanderthals living 60,000 years ago in present-day Iraq used plants such as hollyhock [1,2]; these plants are still widely used in ethnomedicine around the world. It is estimated that there are 250,000 to 500,000 species of plants on Earth [3]. A relatively small percentage (1 to 10%) of these are used as food by both humans and other animal species. It is possible that even more are used for medicinal purposes [4].

Garcinia is a large genus of polygamous trees or shrubs, distributed in the tropical Asia, Africa and Polynesia and is a rich source of bioactive molecules including xanthones, flavonoids, benzophenones, lactones and phenolic acids [5]. It has antifungal properties [6] and it prevents acute ulceration in rats when orally administered [7]. But there have been no reports on the effects of Garcinia indica (kokum) against four strains of bacteria, viz., Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Enterobacter aerogenes and four fungal species (C. albicans, A. niger, Fusarium sp. and Penicillium sp.) and to compare these antimicrobial effects with its cytotoxic effects on Balb/c 3T3 mouse fibroblasts.

MATERIALS AND METHODS

Microorganisms Tested: The following microorganisms were used in the present study which were procured from Microbial Type Culture Collections, Chandigarh, India.

Bacteria: Bacillus subtilis (MTCC 7419), Staphylococcus aureus (MTCC 3381), Enterobacter aerogenes (MTCC 7325) and Escherichia coli (isolated in the laboratory).

Fungi: Candida albicans (MTCC 3071), Aspergillus niger, Fusarium sp. and Penicillium sp. (isolated in the laboratory).
The bacteria were grown on Nutrient agar at 37°C and the fungi were grown on Potato Dextrose Agar at room temperature.

Cell Line: Balb/c 3T3 mouse fibroblasts (Procured from National Center for Cell Sciences, Pune, India). The fibroblast cells were cultured in 5 ml culture media consisting of 90% DMEM (Himedia) medium and 10% fetal bovine serum, at 37°C in humidified CO₂ incubator. The fungi, the last tube with no visible growth of bacteria or fungi was taken to represent MIC of test samples which was expressed in mg/ml. The broth dilution assay was also carried out with streptomycin for bacteria and nystatin for fungi in the same way as the extracts and MIC values of streptomycin and nystatin were determined [9].

Plant Material: The air-dried fruit rind of kokum (*Garcinia indica*) were collected. The rind was cut into pieces and ground into powder using a sterile pestle and mortar. The soluble ingredients in the ground part were extracted by solubilization using water as the solvent. 5g of each of the dried leaves were extracted by successive soaking for 2-4 hrs using 100ml of distilled water in a 250ml sterile conical flask. The extracts were filtered using Whatmann filter paper No 1. They were filter sterilized with the help of Millipore Syringe filters of 0.2µm pore size before use. The extracts were stored at 4°C for further use.

Antimicrobial Activity: The modified agar well diffusion method [8] was employed. Nutrient agar and Potato dextrose agar were used for bacteria and fungi respectively. Once the agar was solidified, 50µl of the different bacterial and fungal cultures were spread onto the plates using a sterile glass spreader. The plates were punched with six millimeter diameter wells and filled with 25µl of the plant extracts and blanks (distilled water which served as the negative control). Simultaneously, streptomycin (100µg/ml) and nystatin (100µg/ml) were used as positive controls for bacteria and fungi respectively. The tests were carried out in triplicates. The bactericidal plates were incubated at 37°C for 24 hrs and fungal plates at room temperature. The diameter of the zone of inhibition was measured in millimeters at 24 hrs and 120 hrs for bacteria and fungi respectively.

The Minimum Inhibitory Concentration (MIC): A loop full of bacterial and fungal cultures from the slant was inoculated into nutrient broth and potato dextrose broth respectively and incubated at 37°C for 24hrs for bacteria and at room temperature for 4-5 days for fungi. The fresh broth (20ml) was seeded with 0.25ml of 24hr bacterial broth culture or 4-5 day’s fungal broth culture. Then 0.2ml of the extract was added to 1.8ml of seeded broth which was the 1st dilution. 1ml of the solution was diluted further with 1ml of the seeded broth to produce 2nd dilution and the procedure was repeated until six dilutions were obtained. A set of tubes containing only seeded broth were kept as control. After incubation for 24hrs at 37°C for bacteria and after 4-5 days at room temperature for fungi, the last tube with no visible growth of bacteria or fungi was taken to represent MIC of test samples which was expressed in mg/ml. The broth dilution assay was also carried out with streptomycin for bacteria and nystatin for fungi in the same way as the extracts and MIC values of streptomycin and nystatin were determined [9].

Cytotoxicity Studies: The fibroblast cell cultures were then treated with 8µl(80µg), 16µl(160µg) and 24µl(240µg) of the extracts, prepared from *G. indica* fruit rinds. The controls were treated with 10µl of sterile distilled water. Cultures were incubated for a further 5 days and the total cell concentration and percentage viability were determined by adopting trypan blue dye exclusion method [10] and the cytotoxic profiles of the extracts were assessed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide Microculture Tetrazolium (MTT) viability assay as described by Mosmann [11]. Cell suspensions were seeded into 96-well microtitre plates at a plating density of 0.1 million cells/mL. After 24 h incubation, cells were exposed to various concentration of plant extract and incubated for 68 h. MTT (5 mg/mL) was added to each well at appropriate time and further incubated for 4 h after which the media was removed. DMSO was added later into each well to solubilize the formazan crystals. The absorbance was read at a wavelength of 595 nm using a microtitre ELISA plate reader. Experiments for each extract were carried out in triplicate including untreated cell control and a blank cell-fiee control. The percentage cellular viability was calculated with the appropriate controls taken into account. The concentration which inhibited 50% of cellular growth (IC₅₀ value) was determined.

Statistical Methods: The significance was calculated using one-way analysis of variance (ANOVA) and Student’s t-test. A value of P<0.05 was taken as statistically significant. And the results were calculated as mean with standard error (±SE) values.

RESULTS AND DISCUSSION

The antibacterial testing of the fruit rind extract of *G. indica* on four different bacteria showed that the extract was inhibiting the growth of *B. subtilis* with the highest zone of inhibition of 2.4mm (Figure 1) and
Fig. 1: Effect of *Garcinia indica* fruit rind extract on Different Bacterial strains

Fig. 2: Effect of *Garcinia indica* fruit rind extract on Different Fungal strains

Fig. 3: Effect of *Garcinia indica* fruit rind extract on the cell concentration of Balb/c 3T3 mouse Fibroblasts
Table 1: Minimum Inhibitory Concentration of *G. indica* on bacteria

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Kokum</th>
<th>Streptomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>0.5mg/ml</td>
<td>100µg/ml</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>5mg/ml</td>
<td>100µg/ml</td>
</tr>
<tr>
<td>E. aerogenes</td>
<td>5mg/ml</td>
<td>100µg/ml</td>
</tr>
<tr>
<td>S. aureus</td>
<td>50mg/ml</td>
<td>100µg/ml</td>
</tr>
</tbody>
</table>

Table 2: Minimum Inhibitory Concentration of *G. indica* on fungi

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Kokum</th>
<th>Nystatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>0.5mg/ml</td>
<td>100µg/ml</td>
</tr>
<tr>
<td>Penicillium sp.</td>
<td>0.5mg/ml</td>
<td>100µg/ml</td>
</tr>
<tr>
<td>Fusarium sp.</td>
<td>-</td>
<td>100µg/ml</td>
</tr>
<tr>
<td>A. niger</td>
<td>-</td>
<td>100µg/ml</td>
</tr>
</tbody>
</table>

the least zone of inhibition of 1.0mm on *S. aureus*. Moderate inhibition was shown in other bacteria (1.5mm). Minimum inhibition concentration results revealed that 0.5mg/ml of *G. indica* concentration was enough for inhibiting *E. coli* whereas the MIC of *G. indica* was 5mg/ml for both *B. subtilis* and *E. aerogenes* and 50mg/ml concentration was required to inhibit *S. aureus* (Table 1). Similarly Negi and Jayaprakasha [12] reported the MIC of hexane extract, benzene extract and garcinol against a few Gram-positive and Gram-negative bacteria which were in the range of 15 to 1000, 20 to 1250 and 1.5 to 500 ppm respectively. Better bactericidal activity of garcinol compared to clarithromycin against *Helicobacter pylori* at 6 and 12 hr incubation was reported by Archana [13]. Pasha [14] reported that *G. indica* extract exhibited strong anti-salmonella activity. The aqueous extracts were found to be more active than methanol extracts in their study.

Among the fungi, *G. indica* showed highest inhibition zone of 17.0 mm in *C. albicans* followed by *Penicillium sp.* (1.0 mm) and it could not inhibit the growth of either *A. niger* or *Fusarium sp.* (Figure 2). The MIC of the extract for *C. albicans* and *Penicillium sp* was 0.5mg/ml (Table 2). Tamil Selvi [6], reported that *G. indica* extract has both antifungal and antioxidant properties.

Garcinia indica extract showed inhibitory effect on cultured 3T3 mouse fibroblasts. The cell concentration decreased with increasing concentration of the extract (Figure 3). The cell concentration was almost double in the control flasks than the flasks treated with 80µg/ml of the extract. Among the treatment flasks, 80µg/ml treated flasks had more cells than both 160µg/ml or 240µg/ml treated flasks. The differences were found to be statistically significant. These results are in agreement with the results of Hong *et al.* [15], where garcinol and its derivatives showed potent growth-inhibitory effects on all intestinal cells, garcinol was more effective in inhibiting growth of cancer cells than that of normal immortalized cells and the results indicated that garcinol and its derivatives can inhibit intestinal cell growth, but low concentrations of garcinol can stimulate cell growth. Yamaguchi [7] reported that orally administered garcinol prevented acute ulceration in rats induced by indomethacin and water immersion stress caused by radical formation. Results of Liao *et al.* [16] suggested that the neuroprotective effects of garcinol are associated with anti-oxidation and inhibition of iNOS induction in astrocytic cells.

Since our results indicated an antimicrobial effect combined with an inhibitory effect on mouse fibroblasts, the possibility of using this herbal product to treat inflammations and cancerous conditions of the fibroblastic cells can be explored in the future. It remains to be determined whether the currently observed cytotoxic effects of *G. indica* extract on fibroblast cell growth can occur in vivo.

REFERENCES