Evaluation of the Activated Carbon Prepared of Algae Gracilaria for the Biosorption of Cu (II) from Aqueous Solutions

A. Esmaeili, S. Ghasemi and A. Rustaiyan

Department of Chemical Engineering, Department of Marine Science and Technology, Islamic Azad University, North Tehran Branch, Tehran, Iran

Abstract: In this study, the batch removal of copper (II) ions from aqueous solution and wastewater using marine red algae Gracilaria was investigated. Activated carbon prepared from Gracilaria by acid decomposition was also used for the removal of copper from aqueous solution and wastewater. Activated carbon prepared marine algae were used as a low cost sorbent. The effect of pH, biosorption time, adsorbent dose and metal ions concentration, were considered. The most effective pH was found to be 4.0. The biosorption capacities were solution pH dependent and the maximum uptake for copper with initial concentration 70, 100 and 150 mg L⁻¹ at pH 4.0 were obtained 95.53, 93.72 and 88.84%, respectively. The total metal ions biosorption occurs within 2 hours. The equilibrium adsorption data are fitted to Langmuir and Freundlich isotherm models. Both the models represent the experimental data satisfactorily. The adsorption follows second order kinetic. This study shows that by using activated carbon as a valuable material for the removal of copper from aqueous solution wastewater and a better substitute of using in activated marine red algae.

Key words: Biosorption • Copper • Gracilaria • Wastewater • Activated carbon • Isotherm model

INTRODUCTION

Heavy metal pollution correspond to an important environmental problem due to its toxic effects and cumulation throughout the food chain and consequently in the human body [1]. Copper (II) is recognized to be one of the heavy metals most wide spread heavy metal contaminants of the environment [2]. The main treatment processes for the removal of metal ions include: evaporation, chemical precipitation, membrane separation, adsorption and ion exchange processes which are being used to remove copper (II) from wastewater [3]. However, these technologies are most appropriate in situations where the concentration of the heavy metal ions are comparatively high. When heavy metals are existing in the wastewater at low concentrations, they are either ineffectual and costly.

Activated carbon has unquestionably been the most popular and widely used as adsorbent in wastewater treatment equipments throughout the world. However, activated carbon remains a costly material since higher the quality of activated carbon, the greater will be its cost [4]. Therefore, searching for a low cost activated carbon and other adsorbent materials is of great importance for the wastewater treatment [5-8].

The goal of present work was to test the ability of an activated carbon from Gracilaria to remove copper (II) ions from aqueous solution. In addition, kinetics, the equilibrium isotherm, retention time, the effectiveness of pH, initial concentration and dosage of biosorbent were also investigated.

MATERIALS AND METHODS

Preparation of biomass: The biomass used was the red seaweed Gracilaria. It was collected from the Persian Gulf on Qeshm Island. Before use, it was washed several times with tap water to remove the sand particles and dirt. Then clean alga was sun dried for 5 days. Dry biomass was milled and an average of 0.5 mm particles was used for biosorption experiments.

Activated carbon: The dried red alga Gracilaria 112 g was added in small portion to 90 mL of 97% H₂SO₄, and the
resulting mixture was kept for 24 h at room temperature followed by refluxing in fume hood for 4 h. After cooling, reaction mixture was washed repeatedly with deionized water and soaked in 2% NaHCO₃ solution to remove any remaining acid and pH of the activated carbon reached 7, dried in an oven at 150°C for 46 h.

Chemicals: Stock copper solution (180 mg l⁻¹) was prepared by dissolving 0.353 g of copper sulfate pentahydrate (Merck) in 500 mL of deionized water. Copper solutions of different concentration (50-180 ppm) were prepared by adequate dilution on the stock solution with deionized water. The initial pH is adjusted with 1M HCl or 1 M NaOH. The effect of pH on the equilibrium adsorption was investigated by employing concentration of Cu²⁺ (50 mg l⁻¹) and 2 g activated carbon. The pH values were adjusted with diluted HCl and NaOH solution.

The suspensions were shaken at room temperature (23±2°C) using agitation speed (300 rpm) for 2 h. Adsorption of Cu²⁺ was studied using different dosages of activated carbon in 30 mL solution of 50, 70, 100, 130, 150, 180 mg l⁻¹ of initial Cu²⁺ concentration and initial pH 4.0. Initial and final concentrations of metal ions in the solution of each flask were measured by atomic adsorption spectroscopy (GBC-932).

RESULTS AND DISCUSSION

Effect of pH on biosorption: The pH of the aqueous solution is an important controlling parameter in the adsorption process [9]. The effect of pH on copper biosorption on activated carbon is studied at room temperature by varying the pH of copper solution. The uptake of copper (II) showed an increase with an increase in pH from 1.0 to 4.0. The uptake of Copper (II) in pH 1, 2, 4, 5, 6 were obtained 75.68, 93.40, 97.62, 86.33 and 81.47%, respectively. The lowest uptake at higher pH value is probably due to the formation of anionic hydroxide complexes. Because of this effect at higher pH values the ligands such as carboxylate and sulfate groups could uptake fewer metal ions [10].

The effect of biosorption time: The uptake of Cu(II) ions increased quickly and after 15 min, the change becomes slow. However, an increase in retention time from 15 to 120 min resulted in a decrease in the remaining concentration of heavy metals. The uptake of Copper (II) at 15 min with 50, 70, 100, 130, 150 and 180 mg l⁻¹ concentrations (58.54, 53.76, 51.51, 48.43, 40.19 and 35.64%) at 60 min (79.91, 76.52, 72.89, 69.06, 66.63 and 51.61%) and at 120 min (93.59, 95.53, 93.72, 93.04, 88.84 and 85.49%), respectively.

Effect of adsorbent dose on biosorption: Different dosage of biosorbent did not have an effect on the results, but the 5 g of biosorbent was shown higher uptake. Therefore this result was anticipated because increasing adsorbent doses provides greater surface area.

Effect of metal ion concentration on biosorption: By increasing initial concentration, the uptake was decreased. This was due to the saturation of the sorption sites on adsorbents the maximum uptake for copper with initial concentration, 70, 100, 150 mg l⁻¹ at pH 4.0 were obtained as 95.53%, 93.72% and 88.84%.

Equilibrium studies: The equilibrium adsorption isotherm is fundamentally important in the design of adsorption systems. Equilibrium studies in adsorption give the capacity of adsorbent. It is described by adsorption isotherm characterized by certain constants whose values express the surface properties and affinity of the adsorbent. Equilibrium relationships between adsorbent and adsorbate are described by adsorption isotherms, usually the ratio between the quantity adsorbed and that remaining in the solution at a fixed temperature at equilibrium [11]. In order to investigate the adsorption isotherm, two equilibrium models were analyzed. These included the Langmuir and Freundlich.

Langmuir Isotherm: The Langmuir adsorption isotherm is probably the most widely applied adsorption isotherm. A basic assumption of the Langmuir theory is that adsorption takes place at specific homogeneous sites within the adsorbent. The saturated monolayer isotherm can be represented as [12].

$$q_e = b \cdot q_{\text{max}} \cdot \frac{C_e}{1 + b \cdot C_e} \quad (1)$$

Where q_e is the amount of metal ion adsorbed (mg g⁻¹), C_e is the equilibrium concentration (mg L⁻¹), q_{max} is the maximum adsorption capacity and b is an affinity constant.

Freundlich isotherm: The empirical Freundlich equation based on a monolayer adsorption by the adsorbent with a heterogeneous energy distribution of active sites is given below by Eq. (2).
Table 1: Isotherm parameters obtained for biosorption of copper using activated carbon.

<table>
<thead>
<tr>
<th>Isotherm model</th>
<th>2 g</th>
<th>3 g</th>
<th>4 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langmuir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_m(mg g$^{-1}$)</td>
<td>2.527</td>
<td>1.817</td>
<td>1.330</td>
</tr>
<tr>
<td>b (L mg$^{-1}$)</td>
<td>0.208</td>
<td>0.493</td>
<td>0.646</td>
</tr>
<tr>
<td>R^2</td>
<td>0.997</td>
<td>0.993</td>
<td>0.999</td>
</tr>
<tr>
<td>Freundlich</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>2.444</td>
<td>2.704</td>
<td>2.633</td>
</tr>
<tr>
<td>K_s(mg g$^{-1}$)(L mg$^{-1}$)n</td>
<td>0.640</td>
<td>0.671</td>
<td>0.475</td>
</tr>
<tr>
<td>R^2</td>
<td>0.992</td>
<td>0.995</td>
<td>0.974</td>
</tr>
</tbody>
</table>

Table 2: Parameters obtained for first and second-order kinetic model.

<table>
<thead>
<tr>
<th>Activated carbon concentration (mg L$^{-1}$)</th>
<th>First-order kinetic model</th>
<th>Second-order kinetic model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial C_u</td>
<td>k_1 R^2</td>
<td>k_2 R^2</td>
</tr>
<tr>
<td>2 g</td>
<td>0.003 0.916</td>
<td>3.511 0.995</td>
</tr>
<tr>
<td>70</td>
<td>0.003 0.934</td>
<td>3.449 0.989</td>
</tr>
<tr>
<td>130</td>
<td>0.002 0.997</td>
<td>6.816 0.973</td>
</tr>
<tr>
<td>150</td>
<td>0.002 0.983</td>
<td>4.550 0.983</td>
</tr>
<tr>
<td>180</td>
<td>0.003 0.999</td>
<td>5.491 0.870</td>
</tr>
</tbody>
</table>

$q_e = K_F C_e^n$

Where K_F and n are the Freundlich constants [13]. The results showed that the data could be well modeled according to the Langmuir and Freundlich adsorption isotherm. These isotherm constants for Cu_{aq} are presented in Table 1.

Adison kinetics studies: The kinetic of adsorption describes the rate of copper ions uptake on activated carbon which controls the equilibrium time. The adsorption kinetics of Cu(II) biosorption on algae follows second order rate expression given by,

$$\frac{dq}{dt} = K_g (q_e - q)^2$$ \hspace{1cm} (3)

Where K_g is the equilibrium rate constant (g/mg min). q_e and q are the sorption capacity at equilibrium and at time t. The integrated form of Eq (3) becomes:

$$\frac{1}{q_e - q} = \frac{1}{q_e} + K_g t$$ \hspace{1cm} (4)

This has linear form:

$$\frac{t}{q_e} = \frac{1}{K_g} q_e^2 + \left(\frac{1}{q_e}\right) t$$ \hspace{1cm} (5)

A plot t/q_e versus t indicate a straight line of slope $(1/q_e)$ and an intercept of $(1/K_g q_e^2)$ [14]. This isotherm constants are presented in Table 1. This results suggested that the sorption of Cu$^{2+}$ ions followed the second-order kinetic model, which relied on the assumption that biosorption could be the rate-limiting step.

CONCLUSION

In this study adsorption of Cu (II) on activated carbon prepare of alga (Gracilaria) has been investigated. The data obtained through this work supports the view that the activated carbon is an effective low cost adsorbent for the removal of copper from aqueous solution. The adsorption of metal ions is dependent on the amount of activated carbon, concentration of metal ion and retention time and pH of the metal solution. Maximum removal of copper on activated carbon is at pH 4.0. The equilibrium adsorption data are correlated by Langmuir and Freundlich isotherm equation.

REFERENCES

