American-Eurasian J. Agric. & Environ. Sci., 2 (6): 784-791, 2007

ISSN 1818-6769
© IDOSI Publications, 2007

Flood Estimation at Ungauged Sites Using A New Nonlinear Regression Model
and Artificial Neural Networks

'Mahsa Hassanpour Kashani, 'Majid Montaseri and *Mohammad Ali Lotfollahi Yaghin

'Department of Agriculture, Urmia University, Urmia, Iran
2Depal’tment of Civil Engineering, Tabriz University, Tabriz, Iran

Abstract: Artificial neural networks (ANNs) have been applied within the field of hydrological modeling
but relatively little attention has been paid to the use of these tools for regional flood modeling and flood
estimation in ungauged catchments. In this paper, the ability of Multi-Layer Perceptron (MLP) and Elman
networks for T-year flood estimation in western and southern catchments of Urmia lake have been
evaluated and compared with the result of a new regression model. At first, these networks used
physiographic and climatic data selected from the multiple regression model, to train. Finally, the best
structure of these networks is chosen based on correlation coefficient between actual and estimated
discharges. The obtained results have proved the ability of ANNs to predict T-year flood events and the

effect of networks types on prediction precision.
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INTRODUCTION

The temporal and spatial variability that
characterizes a river system makes flow forecasting a
very demanding task. Flow forecasting is a crucial part
of flow regulation and water resources management, as
it is related to issues such as drought prevention, flood
forecasting for dam and human safety and ecosystem
sustainability [1]. As it is reported, floods and droughts
kill more people and cause more damage than any other
natural disaster [2]. Consequently, there is a need for
systems capable of efficiently forecasting water levels
or discharge rates in rivers. It is difficult to estimate
flood at ungauged catchments that there is no
information about discharge rates or flood peak data. So,
this is one of the biggest problems for hydrologist to
estimate flood event magnitudes from catchment
properties and/or regional climatology [3]. The UK
Flood Estimation Handbook (FEH) recommends that,
wherever possible, such estimates should be based on
the transfer or analogous data from sites that are
hydrologically similar in terms of catchment area,
rainfall and soil type [4]. So, it is better to apply
methods for flood forecasting that need few
hydrological data [3, 5].

Artificial neural networks were first introduced in
the 1940s (McCulloch and Pitts, 1943). Interest grew in

these tools until the 1960s when Minsky and Papert
(1969) showed that networks of any practical size could
not be trained effectively. It was not until the mid-
1980s that ANNs once again became popular with the
research community when Rumelhart and McClelland
(1986) rediscovered a calibration algorithm that could
be used to train networks of sufficient sizes and
complexities to be of practical benefit. Since that time
research into ANNs has expanded and a number of
different network types, training algorithms and tools
have evolved [4]. The structure of ANNs is very similar
to human brain’s structure and has the ability of
learning, generalizing and deciding. So, they can solve
many problems that are difficult to understand, define
and quantify such as economical, medical, engineering
problems, etc [6].

It was the first time to apply ANNs in water
sciences by Daniel in 1991. Then, it was applied for
discharge prediction at different catchments [7]. In the
context of this paper, ANNs are trained to represent the
relationship between a range of catchment descriptors,
rainfall and associated flood event magnitudes. There is
no need for the modeler in this case to fully define the
intermediate relationships (physical processes) between
catchment descriptors or rainfall and flood event
magnitudes-the ANN identifies these during the
‘learning process’.
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TOOLS AND METHODS

Nonlinear Regression Model (NRM): In the present
study, a new regression model which does not have
been applied within the field of regional flood modeling,
is defined as follows:

QTI, = OLT]'B (l)

Where Qr, is T-year flood event magnitude (m*f5s), T,

is the return period (year), o and P are the parameters
which are defined based on the physiographical and
climatic data as follows:

a=ag+ajA+aP+asl +a,S +asSy

2
+agh, +a7K, +agT; +agH+a;R, 2)

B=bg+bA+b,P+bsL +b,S. +bsS,

+bgFy + b7k, +bgT, +boH+bjoR, )

Where A is the catchment drainage area (km?), P is
the catchment perimeter (km), L, is the Longest
drainage path (km), Sy is the catchment mean slope (%),
S, is the river mean slope (%), F, is the gravelius factor,
F, is the form factor, T, is the time of concentration (hr),
R, is the 2-year rainfall (mm), H is the Mean altitude
of catchment above sea level (m) and a; and b; are the
model constant coefficients.

Multi-Layer Perceptron Network (MLP): Although
there are now a significant number of network types
and training algorithms, this paper will focus on the
Multi-Layer Perceptron (MLP) and Elman networks.
Figure 1 and 2 provide an overview of the structure of
these networks, respectively.

In this case, the ANN has three layers of neurons
(nodes)-an input layer, a hidden layer and an output
layer. Each neuron has a number of inputs (from
outside the network or the previous layer) and a number
of outputs (leading to the subsequent layer or out of the
network). A neuron computes its output response based
on the weighted sum of all its inputs according to an
activation function (in this case the tangent sigmoid).
Data flows in one direction through this kind of
network-starting from external inputs into the first layer
(the predictors), that are transmitted through the hidden
layer and then passed to the output layer from which the
external outputs (predictands) are obtained. The
network is trained by adjusting the weights that connect
the neurons using a procedure called error back
propagation. In this procedure, the network is presented
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Fig. 2: Elman network

with a series of training examples (predictors and their
associated predictands) and the internal weights are
adjusted in an attempt to model the predictor/predictand
relationship. This procedure must be repeated many
times before the network begins to model the
relationship [4, 6].

Elman network: Elman Networks are a form of
recurrent Neural Networks which have connections
from their hidden layer back to a special copy layer.
This means that the function learnt by the network can
be based on the current inputs plus a record of the
previous state(s) and outputs of the network. In other
words, the Elman net is a finite state machine that
learns what state to remember (i.e., what is relevant).
The special copy layer is treated as just another set of
inputs and so standard back-propagation learning
techniques can be used (something which isn't generally
possible with recurrent networks). At each time step, a
copy of the hidden layer units is made to a copy layer.
Processing is done as follows:
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e  Copy inputs for time t to the input units

e Compute hidden unit activations using net input
from input units and from copy layer

e Compute output unit activations as usual

e  Copy new hidden unit activations to copy layer

RESULTS AND DISCUSSION

Nonlinear regression model: The parameters of the
nonlinear model (o and P), are calculated using Excel
software and the Linest function. In order to determine
the best variable that has the most effect on the multiple
regression models, T-year flood magnitudes are
estimated using each variable in the both models. The
first variable is chosen based on the maximum
correlation coefficient between actual and estimated
discharges. The second eftfective variable is also chosen
by testing the effect of the both rest variables and the
first variable on the models and etc. This will be
continued until there is no difference between two
successive maximum correlation coefficients or the last
obtained correlation coefficient is enough high. Table 1
shows these selected variables. As can be seen from
Table 1, the presence of Fy, and F, in south catchment
and also the presence of S, and S; in west catchment
models is not reasoned because of their similar
influences on T-year flood magnitudes. So, the data of
A and F, (No.2) and Fy, A, S; and H (No.4) are
recommended as the best variables for flood estimation
in south and west catchments, respectively.

MLP network: The selected data from the regression
model are considered as the neural network’s inputs.
They were normalized in the range of [-1,1] because of
using the tangent sigmoid transfer function in the
hidden layer, as follow:

Z(P—P ; )
P - 1 min _1 (4)
" (Pmax_Pmin)

Table 1: The best variables chosen by the nonlinear regression model

Where P; is the inputs, P, and P, are minimum
and maximum input respectively and P, is the
normalized inputs. In order to improve generalization,
all data were divided into three sets: training set (%75
of data), validation set (%30 of training set) and test set
(%25 of data). Twelve training algorithms such as:
Basic gradient descent (gd), Gradient descent with
momentum (gdm), Adaptive learning rate (gda, gdx),
Resilient back propagation (rp), Fletcher-Reeves
conjugate gradient algorithm (cgf), Polak-Ribiére
conjugate gradient algorithm (cgp), Powell-Beale
conjugate gradient algorithm (cgb), Scaled conjugate
gradient algorithm (scg), BFGS quasi-Newton method
(bfg), One step secant method (oss) and Levenberg-
Marquardt algorithm (Im) were applied to train the
network. After training, network was tested based on
the test data and performed a linear regression between
the network outputs and the corresponding targets by
putting the entire data set through the network (training,
validation and test) to measure performance of the
trained network. It returns three parameters. The first
two, m and b, correspond to the slope and the y-
intercept of the best linear regression relating targets to
network outputs. If we have a perfect fit (outputs
exactly equal to targets), the slope would be 1 and the
y-intercept would be 0. The third variable returned by
regression analysis is the correlation coefficient (R-
value) between the outputs and targets. It is a measure
of how well the variation in the output is explained by
the targets. If this number is equal to 1, then there is
perfect correlation between targets and outputs. Finally,
the optimum number of the hidden neurons for each
algorithm and input numbers was determined based on
the maximum correlation coefficient (Table 2 and 3). It
can be seen that Im and bfg algorithms are the best
algorithms in south and west catchments with average
correlation coefficient of 0.973 and 0.916, respectively.
Also, their results are better than the nonlinear
regression model. Gd, gdm, gda, gdx algorithms were
recognized as weak algorithms. Maximum average
correlation coefficient of all algorithms at each input

South catchment West catchment

Catchments

No. Best variables Correlation coefficient Best variables Correlation coefficient
1 A 0.874 Fy 0.712

2 A-F, 0.901 Fy -A 0.838

3 A-F, - F, 0.925 Fy, -A-S; 0.886

4 A-F, -F, -R, 0.930 Fy, -A- S, -H 0.936

5 A-F, -Fy -R;-S; 0.948 Fy, -A- S, -H-S, 0.949

6 A-F, -Fy -Ry-S; -L; 0.974 Fp -A- S, -H- Sy -L, 0.953
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Table 2: Results of MLP and Elman networks in south catchment

ed gdm gda
Algorithms No. R neuron  epochs R neuron epochs R neuron  epochs
Back propagation 1 0738 3 110 0.790 13 110 0.845 13 89
2 0.803 7 110 0.835 1 110 0.930 8 105
3 0.781 7 110 0.780 10 110 0.892 10 95
4 0651 7 110 0.783 7 110 0.896 11 105
5 0736 10 110 0.778 8 110 0.935 9 102
6 0750 9 110 0.879 1 110 0.960 9 110
gdx gdx” oy
R neuron  epochs R neuron epochs R neuron  epochs
Back propagation 1 0.864 19 110 0.855 18 110 0.891 19 110
2 0.906 10 110 0.899 15 110 0.965 16 108
3 0915 9 110 0911 12 110 0.960 11 84
4 0.89 8 80 0918 9 110 0.951 11 102
5 0926 8 110 0.931 6 110 0.971 8 60
6 0917 4 110 0.936 7 110 0.975 9 47
cgf cgb cgp scg
R neuron  epochs R neuron epochs R neuron  epochs R neuron  epochs
Conjugate 1 0.883 19 77 0.890 15 81 0.888 20 110 0.880 17 88
gradient 2 0961 7 70 0.971 15 59 0.964 11 110 0.966 12 110
3 0967 13 52 0.974 5 97 0.957 9 110 0.966 13 65
4 0964 10 84 0.966 4 104 0.961 4 71 0.964 9 89
5 0969 6 88 0.969 7 49 0.969 5 55 0.973 9 70
6 0975 7 66 0.973 6 58 0.969 7 41 0.974 2 108
0ss bfg
R neuron  epochs R neuron epochs
Quasi-Newton 1 0882 13 108 0.929 19 110
2 0947 16 62 0.972 12 41
3 0956 2 84 0.965 10 56
4 0.960 6 70 0.974 4 68
5 0958 8 53 0.974 8 50
6 0970 7 85 0.974 3 75
Im
R neuron  Epochs
Levenberg 1 0.937 8 55
-Marquardt 2 0979 9 7
3 0981 7 10
4 0982 7 6
5 0979 9 6
6 0980 8 7

¢dxis related to Elman network

number was equal to 0.941 related to the network with
six input variables (No. 6) and 0.905 related to the
network with five input variables (No. 5) in both south
and west catchments, respectively. But, there was not
more difference between them and 0.933 (No. 2) and
0.891 (No. 4) in both catchments, respectively. So, it
can be concluded that MLP network is able to estimate
flood using just two variables in south catchment and
four variables in west catchment, precisely and there is
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no need for more inputs. In other words, MLP network
is able to recognize the effective variables needed for
flood forecasting. More input variables do not always
cause to a good performance of MLP network.

Elman network: Elman network was trained as similar
as MLP, but only gdx algorithm was applied to its
training. Table 2 and 3, also show the results of this
network. It can be seen that, this network with six input
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Table 3: The results of MLP and Elman networks in west catchment

ed gdm gda
Algorithms No. R neuron  epochs R neuron epochs R neuron  epochs
Back propagation 1 0.691 13 120 0.606 5 48 0.711 13 101
2 0.664 11 120 0.687 9 18 0.841 8 110
3 0.669 3 120 0.719 5 120 0.879 5 112
4 0.554 1 120 0.847 9 48 0.888 5 120
5 0.772 6 120 0.673 3 31 0.928 11 101
6 0.657 9 120 0.658 6 120 0.910 4 105
gdx gdx” p
R neuron  epochs R neuron epochs R neuron  epochs
Back propagation 1 0.725 17 120 0.698 12 118 0.712 16 69
2 0856 17 120 0.788 9 85 0.891 11 80
3 0.887 13 120 0.870 10 120 0.893 12 50
4 0.940 9 120 0.888 10 120 0.930 8 79
5 0927 1 120 0.875 10 120 0.950 8 120
6 0.787 3 120 0.906 7 120 0.903 3 20
cgf cgb cgp scg
R neuron  epochs R neuron epochs R neuron  epochs R neuron  epochs
Conjugate gradient 1 0.716 13 17 0.717 5 37 0.714 17 21 0.713 17 28
2 0935 9 63 0913 4 43 0.937 14 40 0.907 10 48
3 0910 5 27 0.907 14 29 0901 12 42 0.893 12 32
4 0901 9 41 0.942 9 52 0.922 9 48 0.939 9 49
5 0924 1 20 0.946 2 53 0.961 6 30 0.922 1 17
6 0929 4 46 0.939 4 43 0.957 6 69 0.924 1 32
0ss bfg
R neuron  epochs R neuron epochs
Quasi-Newton 1 0716 16 32 0.731 5 68
2 0924 13 41 0.931 13 52
3 0918 13 77 0.947 11 44
4 0936 10 58 0.945 12 31
5 0944 6 91 0.973 9 34
6 0942 8 50 0.972 7 40
Im
R neuron  Epochs
Levenberg 1 0.723 7 18
-Marquardt 2 0947 4 36
30937 8 12
4 0951 5 9
5 0937 4 40
6  0.966 3 8

gdx’ is related to Elman network

variables (No.6) has the best performance in west
catchment because of the maximum correlation
coefficient value (0.906) and there is a remarkable
difference between it and the one of No.4 (0.888).
Also in south catchment, the network shows the
best results when it takes six input variables (No.6)
because of the maximum correlation coefficient value
(0.936) that is more than the correlation coefficient of
No.2 (0.899). So, Elman network could not recognize
the best variables for flood forecasting, well. In
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general, Elman network shows a weak performance
compared with MLP and the nonlinear regression
model in both catchments. According to the Tables, it
can be seen that Elman network has a low convergence
speed. Also, this network needs more hidden neurons
than MLP. Figure 3 and 4 shows the actual and
estimated flow from the best algorithms of MLP,
Elman network and the nonlinear regression model
using the suggested variables in west and south
catchments, respectively.
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Fig. 3: Actual and estimated flow from NRM, MLP (bfg) and Elman networks for west catchment
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Fig. 4: Actual and estimated flow from NRM, MLP (Im) and Elman networks for south catchment
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Fig. 5: RMSE and correlation coefficients (R) values
versus input numbers of NRM, MLP (bfg) and
Elman networks in west catchment

The performances of networks with varying
number of input (from 1 to 6 in addition to the return
period variable) and hidden nodes were also
investigated and classified according to the RMSE
(Root Mean Squared Error) of the estimated T-year
floods as compared to actual T-year floods. RMSE is
stated as below:

®)

Where Qreritv = estimated T-year flood, QeTit‘ =

actual T-year flood and N = total number of T-year
flood values.

The obtained results confirm the previous
obtained results based on the correlation coefficients.
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Figure 5 and 6 shows RMSE and correlation
coefficients (R) values versus input numbers of NRM,
the best algorithms of MLP and Elman networks in
west and south catchments, respectively.

CONCLUSION

In the nonlinear regression model, as the number of
input variables increases, the values of correlation
coefficients increase and the RMSE values reduce. In
other words, the regression model needs more variables
to estimate flood precisely and it is difficult to
recognize the best variables using the regression model.
In south catchment, form of the sub catchments and in
west catchment, the altitude of sub catchments has
more effect on T-year flood magnitudes. MLP network
(except some weak algorithms) outperforms Elman and
the regression model; also, Im and bfg algorithms of
this network are suggested to estimate flood in south
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and west catchments, respectively. The regression
model (in determining MLP’s input variables) and MLP
network (in determining the best variables for flood
forecasting and estimating T-year floods) as a hybrid
model showed satisfactory results. In south catchment,
A and F, variables and in west catchment, Fy, A, S, and
H variables are suggested to estimate T-year flood
magnitudes. Elman network has a low convergence
speed and needs more hidden neurons than MLP.
Elman network did not outperform MLP and the
regression model in both catchments, so, it is not
suggested to estimate T-year flood events in both
catchments of Urmia lake.
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