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Abstract: Detecting of variations of depth to groundwater, temporarily and spatially, is a main factor to obtain
sustainable water use in the basin. Usually point measurements of depth to groundwater are available in any
area, but what is needed is groundwater surfaces based on these measurements that show condition of depth
to groundwater. For simulation of this surface a robust interpolation method is needed. The main purpose of
this study was to compare two different fitting methods, ordinary least squares (OLS) and weighted least
squares (WLS), for fitting theoretical variogram models to the experimental variogram based on six selected
years (1982, 1991, 1996, 2001, 2006, 2012) as starting points. The cross-validation method was utilized to evaluate
the precision of the methods and two indicators – the correlation coefficient (R ) and the root mean squared2

error (RMSE) were used to compare the different variogram models fitting by two fitting methods. Two other
indexes – deviation of estimation errors ( ) and 95% prediction interval (95 PPI) were used for evaluation of
prediction errors. Results showed that the circular model fitted by WLS method with respectively lowest and
highest values of RMSE and R  is the optimal method for interpolating depth to groundwater. It also contained2

the minimum standard deviation of estimation errors and lowest 95% prediction interval (95 PPI). Spatial
distribution maps of depths to groundwater in different years indicated that although the depths to
groundwater in this region are relatively deep but small fluctuations of depth to groundwater have happened
in the past 30 years. Temporal variation of depth to groundwater showed that the water table has risen over the
past 30 years, with average of 0.22 m/yr.
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INTRODUCTION exact interpolation method is required and a great number

Groundwater simulation models today play an active different methods of interpolation, no method is uniquely
role in the development and utilization of logical water desirable and therefore the most suitable interpolation
policies. Since the validity of the simulation depends method for a particular situation can be achieved only by
highly on the existing data, the duty of effective use of comparing their results. Deterministic and Geostatistical
the observation networks is very importance [1]. Now techniques are two main interpolation methods. The
most researches are focused on the exchange of surface deterministic method is utilized for making surfaces from
water and groundwater and groundwater system model. point measurements and rely on the level of similarity
Since the cost of the installation and maintenance of a (e.g., IDW). The geostatistical interpolation approach is
groundwater monitoring network is extremely high, an based on statistics and comprises errors or uncertainty of
optimal monitoring network should be designed, which predictions and can be applicable for more progressive
leads to the research of proper network design method [2]. prediction surface modeling. 
Depth to groundwater measurements are accessible Between various interpolation techniques, the
whereas spatial distribution of groundwater surfaces inverse distance weighting (IDW) method is the most
based on these measurements are required. To do this an popular method for estimation of missing data in

of studies have discussed in the literature. Among
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hydrology and geosciences [3]. Several variants of IDW results using cross-validation method. Subsequently, the
are derived and adopted by researchers with a main focus most  suitable  interpolation method was applied for
on the weighting schemes. In fact the prosperity of the spatio-temporal analysis of depth to groundwater. Li and
IDW method relies fundamentally on the existence of Revesz [12] used various interpolation methods to
positive spatial autocorrelation [4], since data from places examine spatio-temporal variations of regionalized
close to each other in space are more likely to be the same variables and improved their existing dataset with some
than the data from locations away from one another [5]. measurements in different time periods. Machiwal, Mishra
Unfortunately, this condition is not always true and then [13] integrated geostatistics and GIS in order to model
inserts arbitrariness in the choice of weighting parameters. spatio-temporal variations of groundwater levels to
Deterministic methods such as IDW also have discover the behavior of the hard-rock aquifer systems.
weaknesses. For example, in IDW there is no specific way Experimental variogram of the observed groundwater
for specify the power and neighborhood radius. Thus was levels was calculated using 750-m lag distance interval
tried to develop a linear estimator that act based on and the four most frequently used geostatistical methods
average weighted of observations and has specific were fitted to the experimental variogram. Groundwater
performance for determination of the weights that led to maps revealed that the groundwater levels are forcefully
invention of kriging method by Krige [6]. influenced by surface topography and the existence of

Various studies have been accomplished to explain surface water bodies in the study area. Also, temporal
the spatial and temporal distribution of groundwater level variation of the groundwater levels was significantly
fluctuations. The most advantageous tool for analyzing regulated by the wet-season recharge and amount of
such processes is geostatistical techniques. Spatial groundwater exploitation.
analysis of groundwater level of 31 wells were carried out The main objectives of this study were firstly to
by Theodossiou and Latinopoulos [1] employing kriging, select an optimal method for fitting theoretical variogram
but  no  temporal  analysis was done. However, they models namely, spherical, circular, Gaussian and
provide some statistical analysis like maximum and exponential, to the experimental variogram in the study
minimum value, mean, median and standard deviation area, among fitting methods (including ordinary least
based on their data from two years of observation. Olea squares (OLS) and weighted least squares (WLS)). We
and Davis [7] in an extensive study used the kriging and did so by comparing the accuracy of each fitting method
cross validation method for estimation of the water level and analyzing the errors. Secondly, the temporal and
at each observation well. In addition, some new spatial variations of depth to groundwater in the study
observation wells were proposed based on the standard area were interpolated by performing the ordinary kriging
deviation of kriging. Prakash and Singh [8] used the using the parameters (sill, range and nugget) estimated by
technique of kriging and specified the appropriate number the optimal fitting method. All interpolations and
of observation wells that can be added to the available geostatistical analysis were carried out using the
network to monitor the spatial distribution of groundwater statistical software GNU R, version 2.15.2 and the add-on
level. Ahmadi and Sedghamiz [9] utilized the kriging and package geoR [14].
cokriging methods to check their accuracy in groundwater
depth mapping. Their results showed that cokriging MATERIALS AND METHODS
provide more accurate results in mapping the groundwater
depth across the study area. Overally, results depicted Study Area and Data Collection: This study was carried
that kriging and cokriging represent uncertainty in out on the plain in central of Nebraska state, which
estimations, since they underestimated the groundwater occupies an area of 1428 km  (longitude from 97°20'W to
depth for dry, wet and normal conditions. 97°50'W and latitude from 40°40'N to 41°05'N). Nebraska

Between the studies focusing on temporal analysis of is one of the leading agricultural states in the USA with
groundwater, Kumar and Ahmed [10] evaluated the over 3.4 million ha of irrigated land and about 5 million ha
groundwater level within 12 months of the year and of natural grassland. The average annual precipitation
applied the kriging technique for estimation of (January 1–December 31) is about 550 mm. The long-term
groundwater level in some unmeasured points and wells statewide average growing season (May 1–September 30)
for each month. Sun, Kang [11] studied the groundwater rainfall is about 360 mm. The maximum long-term average
level of the Minqin oasis located in northwest China growing season precipitation occurs in the southeast part
utilizing a kriging method and calculate the precision of of  the state and the minimum occurs on the western edge.
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Fig. 1: Location of the study area and position of the observation wells in Nebraska State

While the greater part of precipitation occurs in spring, created for each observation well. Within the 30-year
the distribution in the calendar year shows significant dataset, depth to groundwater in 1982, 1991, 1996, 2001,
fluctuations. Nebraska has a continental climate, with 2006  and 2012 was selected as reference points
highly  variable  temperatures from season to season and comparing various fitting methods and analysis spatial
year to year. The central region has an average annual and temporal variability of depth to groundwater over the
normal temperature of 10°C, with a normal monthly period 1982-2012.
maximum of 24°C in July and a normal monthly minimum
of –6°C in January. The prevailing cropping pattern in the Statistical Analysis of Dataset: Basically, the hypothesis
area is field maize-soybean rotation and a considerable of kriging is that the target variable is stationary and has
area of croplands in the region are irrigated with center a normal distribution that is probably the largest
pivots with extracted water from the Ogallala aquifer that restriction of kriging. The histogram displays the
is the main source of irrigation water [15]. frequency distribution for the dataset. Therefore,

The monthly average observed depth to groundwater normality of the spatial depth to groundwater dataset was
dataset used in this study has been provided from USGS checked before geostatistical modeling by plotting
(U.S. Geological Survey) and comes from 58 observation histograms and by applying one of the most powerful
wells over the period of 1982-2012. Study area and statistical tests, i.e., Shapiro–Wilk (SW) test, for six
observation wells are shown in Fig. 1. Based on the selected years, during the period of 1982-2012 using R
average monthly depth, a dataset of mean annual depth software.  The Shapiro–Wilk test uses the null hypothesis
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principle to determine whether a sample y , ..., y  is1 n

normally distributed from a population. This test was the (2)
first test that was capable to indicate departures from
normality owing to either skewness or kurtosis, or both where  = estimation of function Z(x) at point x  and
[16]. The Shapiro–Wilk test statistic is defined as:  = weighting factors.

variogram, computed as half of the mean squared of the

(1)

where y  is the i  order statistic,  is the sample mean, where  is the estimated semi-variance for thei
th

pairs in the vector distance class h. The experimental

and m=(m , …, m )  are the expected values of the order its direction. In the absence of isotropy (anisotropic1 n
T

statistics of independent and identically distributed spatial patterns), various variograms should be extracted
random variables sampled from the standard normal in the typical groups of directions.
distribution and is the covariance matrix of those order
statistics.

The value of W is between zero and one. The small
value of W result in rejection of normality, while the value
of one represents normality of the data.

The function to carry out this test has an element that
is called p-value. If the value of p is greater than 0.05, the
data is normal. If this value is less than 0.05, then the data
is significantly apart from a normal distribution.

Ordinary Kriging Method and Experimental Variogram:
There are various interpolation methods, e.g., kriging,
inverse distance weighting, deterministic splines, etc.
However, kriging, or best linear unbiased estimation
(BLUE), given only the variogram, has been the most used
in mining, geology and hydrology [17]. A significant
superiority of kriging is that it is more flexible compared
with other interpolation methods [17]. The weights are not
choose based on some optional principal that may be
suitable in some cases but not in others, but depend on
how the function varies in space. Data can be interpreted
in a systematic and objective way and previous
experiences are used to create a variogram, which then is
used to specify the adequate weights [13].

The geostatistical methods such as kriging, use a
specific function which is called experimental variogram,
in order to calculate the difference between observations
and to evaluate the weights  (Eq. 2).i

0

i

The first step in kriging is to calculate an experimental

components of data pairs, using the equation below:

(3)

distance h and m(h) is the number of calculated point

variogram is a function between distance and direction
and when the field has isotropy, it is relatively simple to
compute, which depends only on h and independent from

Methods for Fitting Theoretical Variogram to the
Experimental Variogram: Experimental variogram
estimators are useful tools for exploring spatial
correlation, but they can not be used in spatial regression
or prediction, because they do not necessarily imply a
valid spatial process. Hence, the experimental variogram
curve is defined by another theoretical curve with a
determined mathematical formula. This smooth curve
fitted to the experimental variogram is called theoretical
variogram. The most generally used theoretical variogram
models are spherical, circular, Gaussian and exponential.
Choosing and matching a theoretical variogram is
something of an art , not science [18]. Many packages
supply a default model and try to find the best set of
parameters (sill, nugget and range) to fit the dataset,
whereas other models utilize this approach for all models,
which they support and choose the one with the highest
correlation coefficient or lowest sum of squares residuals.
In this study two methods including: ordinary least
squares (OLS) and weighted least squares (WLS) were
used for fitting theoretical variogram model to the
experimental variogram, which the details of these
methods are described below.

Ordinary and Weighted Least Squares: Ordinary least
squares (OLS) regression is a generalized linear modeling
technique that can be utilized to model a single response
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variable that is recorded in at least one interval scale. Cross-Validation: The cross-validation method is applied
Different from linear and nonlinear least squares to specify the method that gives the best result. In a
regression, weighted least squares (WLS) regression is cross-validation exercise, the estimation method is
not connected with a specific type of function used to evaluated at the locations of available measurements. The
describe the relationship between the process variables. sample value at a specific location is temporarily removed
Instead,  weighted  least squares reflect the behavior of from the sample dataset and then, using the remaining
the random errors in the model; and it can be used with samples, the value at the same location is estimated.
functions that are either linear or nonlinear in the When the estimate is computed, it can be compared to the
parameters [19]. Suppose we have estimated the actual sample value that was firstly discarded from the
experimental variogram at MAXLAGS=k distance sample dataset. This procedure is repeated for all available
classes, where  can be either the classical estimate samples. The resulting true and estimated values can then
or the robust estimate . In fitting based on least be compared using statistics [22]. In this way, we
squares, we want to estimate the parameters vector  of calculated the error between the actual and the estimated
the theoretical variogram (h) that minimizes the sum of value so that the accuracy of each interpolation methodz

square differences R( ) given by the following was calculated.
expression: The main selected criterion of cross-validation is root

(4) follows:

For i=1, …, k, the weights are  in the
case of WLS and  in the case of OLS. Hence, the
parameter  is estimated in OLS by minimizing the where is the estimated value; z  is the measured value
expression below: at sampling point i (i=1, …, n); n is the number of values

(5) Another criterion to assess the fitting method is the

For WLS, Cressie [20] examined estimations for the High R indicates the strong correlation between observed
variance of both the classical and robust experimental and estimated variables.
variogram. Then, under the assumptions of normally
distributed observations and uncorrelated squared Analysis of Uncertainties in Prediction: In the
differences in the experimental variogram, the approximate interpolated prediction, factors like the number of adjacent
weighted least squares estimate of the parameters can be samples, the vicinity of the existing samples, the spatial
obtained by minimizing the following expression: adjustment of the samples (clustering) and the

(6) will affect the results. The standard deviation of the

where N(h ) is the number of pairs of points in the ii
th

distance lag.
The main preference that valued weighted least

squares over other methods is the capability to handle
regression situations in which the data points are of
different quality. The greatest drawback of weighted least
squares is likely the fact that the theory of this method is
based on the hypothesis that the weights are known
exactly. This is almost never the case in real applications,
of course, so estimated weights must be used instead [21].

mean squared error (RMSE), which can be calculated as

(7)

i

used for the estimation.

correlation coefficient (R ), which can summarize the2

correlation between the observed and estimated values.
2

characteristics of the phenomenon, which is under study

estimation error ( ) is an uncertainty index based on the
number of adjacent data points, the vicinity of the
samples, as well as the interaction between the different
factors and is defined as:

(8)

where  shows the variance of point values. The second2

term in the square root is a weighted sum of all the
covariance between the pair of samples and computes the
degree of clustering. The third term is a weighted sum of
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the covariance among the sample points and the values relies significantly on the variogram values at small
estimated value and it measures the vicinity to each other lags [23].Generally, the nugget-to-sill proportion can be
of the available samples. The estimation is reliable when utilized to classify the spatial dependency [24]. If the ratio
it treats on a very smooth and well-behaved variable and is less than 0.25, a variable is assumed to have strong
the samples are not very close together but close to the spatial dependence and has a mild spatial dependence if
estimated samples [11]. the ratio lies between 0.25 and 0.75; otherwise, the

RESULTS AND DISCUSSION the value less than 0.25 was detected for all the years.

Results of Statistical Analysis of Dataset: Fig. 2 shows dependence in the study area.
the histograms of the depths to groundwater for six In this study, Eq. (8) was used to analyze the
selected years. It is obvious that the depths to uncertainties of the theoretical variogram models and 95%
groundwater follow an approximately normal distribution prediction intervals were calculated. As shown in Table 3,
in all the years. Moreover, the results obtained from the standard deviation of estimation error for several
Shapiro–Wilk (SW) test confirm normality of the depth to theoretical variogram models ranged from 5.17 to 7.19 and
groundwater. Observed SW test-statistics indicate that the circular model fitted by WLS method had the lowest
null hypothesis of the presence of normality in the depths standard deviation of estimation error and confidence
to groundwater cannot be rejected at 1% significance interval, indicating that this method had the least
level as p-value is greater than 0.05 for all the years except uncertainties and the highest confidence intervals.
year 2006 (Fig. 2a–f). Therefore, it can be concluded that
the dataset of depths to groundwater come from a Spatial Variation of Depth to Groundwater: Ordinary
normally distributed population and hence, are kriging technique and circular theoretical variogram model
appropriate for geostatistical analysis. fitted by WLS method were used for interpolation of the

Comparison of Fitting Methods and Analysis of in the study area; henceforth the spatial and temporal
Uncertainties in Prediction: Table 1 shows parameters of distribution of depths to groundwater in the region were
the four theoretical variogram models fitted to the yearly obtained.
depth of groundwater of six selected years by using OLS Fig. 5 (a-f) shows the spatial variation of depth to
and WLS fitting methods. Also, the correlation coefficient groundwater obtained by the ordinary kriging method in
(R ) and root mean squared error (RMSE) between the the region. We found that the depth to groundwater2

estimated and observed depth to groundwater are generally increased from the northwestern parts of the
represented in Table 2. It can be seen from Table 2 that region to its southeastern parts. The deepest groundwater
two theoretical variogram models, circular and spherical, level was located in a zone in the southeastern part. It is
are the best-fit models with maximal correlation coefficient obvious from Fig. 5 (a-f) and Fig. 6 that the depths to
and minimal RMSE. However, according to table 2 it is groundwater in this region are relatively deep (within a
obvious that the circular model fitted by WLS method is depth range of 50–115 m). In 1982, the area with depth to
the optimal method for interpolating depth to groundwater groundwater below 70m was limited to about 182 km  in
in the study area. The best result of circular model the northwestern and northeastern part of the region; the
variogram  was  obtained for year 1991 that is shown in main part of the area, with depth to groundwater of 80–90
Fig. 3 as an example. The scatter plots of the predicted m, have an area of 569 km ; other deep areas, with depth
values of depth to groundwater, obtained by circular to groundwater of 100–110 m, occurred in southeastern
model fitted by WLS method, versus observed values of part with area of 57.52 km  (Fig. 5a). In 1991, however, the
six  selected  years  are  shown  in Fig. 4. According to area with depth to groundwater below 70 m had declined
Fig. 4 the R  values range between 0.74 (year 1996) and to 155 km , also the area with depth to groundwater of2

0.81 (year 1991). The high values of R  verify that the 80–90 m had declined to 540 km ; on the other hand, the2

circular model fitted by WLS technique is the most area with depth to groundwater of 100–110 m had
accurate model, which can be used by kriging mothed for increased to 79.2 km  (Fig. 5b). The inverse trend was
analysis of the spatio-temporalvvariations of depth to observed  during  the  period  of  1991–2001;  the  area
groundwater in the study region. The precision of kriging with  depth  to  groundwater  below 70 m had increased to

variable has a weak spatial dependence [24]. In this study

Therefore, depths to groundwater have strong spatial

temporal and spatial variations of depth to groundwater

2

2

2

2

2

2
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Table 1: Parameters of four theoretical variogram models fitted by OLS and WLS methods for depth to groundwater of six selected years.

OLS WLS

------------------------------------------------------------------------ -------------------------------------------------------------------

Year Model Parameters Spherical Exponential Gaussian Circular Spherical Exponential Gaussian Circular

1982 Nugget (m ) 0 0 13 0 0 0 9 02

Sill (m ) 184 318 172 180 173 204 167 1742

Range (m) 30000 31000 13900 25900 26000 15000 13000 24000

1991 Nugget (m ) 0 0 15 0 0 0 8 02

Sill (m ) 185 312 173 181 175 206 171 1762

Range (m) 30000 30000 14000 25000 26700 15000 13000 24000

1996 Nugget (m ) 4 2 24 5 0 0 11 02

Sill (m ) 217 331 204 213 213 243 205 2132

Range (m) 29000 25000 15000 26000 26000 14000 13000 24000

2001 Nugget (m ) 0 0 15 0 0 0 6 02

Sill (m ) 253 634 202 208 195 286 196 1932

Range (m) 45000 72000 17000 30000 30000 25000 15000 26000

2006 Nugget (m ) 0 0 12 0 0 0 7 02

Sill (m ) 147 214 137 147 141 154 135 1422

Range (m) 27000 22000 13000 24000 24000 12000 12000 22000

2012 Nugget (m ) 0 0 14 0 0 0 7 02

Sill (m ) 255 693 228 234 225 307 225 2242

Range (m) 38000 67000 15000 29000 30000 22000 15000 26000

Table 2: Comparison of correlation coefficient and RMSE between observed values of depth to groundwater and simulated values by four theoretical variogram

models fitted by OLS and WLS methods

1982 1991 1996 2001 2006 2012

---------------------- --------------------- --------------------- --------------------- ------------------- --------------------

Method RMSE (m) R RMSE (m) R RMSE (m) R RMSE (m) R RMSE (m) R RMSE (m) R2 2 2 2 2 2

OLS Spherical 5.49 0.78 5.37 0.79 6.69 0.74 5.80 0.77 5.51 0.73 6.22 0.77

Exponential 5.50 0.78 5.39 0.79 6.84 0.72 5.80 0.77 5.55 0.73 6.26 0.77

Gaussian 6.27 0.71 5.97 0.74 7.12 0.70 6.09 0.74 5.70 0.70 6.54 0.75

Circular 5.41 0.78 5.19 0.80 6.51 0.75 5.80 0.77 5.34 0.75 6.54 0.75

WLS Spherical 5.45 0.78 5.27 0.80 6.69 0.74 5.70 0.77 5.43 0.74 6.16 0.77

Exponential 5.48 0.79 5.38 0.79 6.85 0.72 5.80 0.77 5.51 0.73 6.23 0.77

Gaussian 6.32 0.71 6.05 0.74 7.12 0.70 6.02 0.75 5.80 0.70 6.57 0.75

Circular 5.35 0.79 5.12 0.81 6.61 0.74 5.70 0.78 5.15 0.77 6.20 0.77

Table 3: Parameters of uncertainty analysis for theoretical variogram models

1982 1991 1996 2001 2006 2012

------------------- --------------------- ------------------- -------------------- -------------------- -------------------

Method (m) 95 PPI (m) 95 PPI (m) 95 PPI (m) 95 PPI (m) 95 PPI (m) 95 PPI*

OLS Spherical 5.53 Z ±1.42 5.42 Z ±1.40 6.74 Z ±1.73 5.86 Z ±1.50 5.55 Z ±1.43 6.28 Z ±1.62* * * * * *

Exponential 5.55 Z ±1.43 5.44 Z ±1.40 6.90 Z ±1.78 5.87 Z ±1.51 5.60 Z ±1.44 6.31 Z ±1.62* * * * * *

Gaussian 6.31 Z ±1.63 6.02 Z ±1.55 7.19 Z ±1.85 6.15 Z ±1.58 5.85 Z ±1.50 6.60 Z ±1.70* * * * * *

Circular 6.32 Z ±1.62 5.24 Z ±1.35 6.57 Z ±1.69 5.87 Z ±1.51 5.39 Z ±1.39 6.50 Z ±1.70* * * * * *

WLS Spherical 5.50 Z ±1.41 5.32 Z ±1.37 6.75 Z ±1.74 5.78 Z ±1.49 5.48 Z ±1.41 6.22 Z ±1.60* * * * * *

Exponential 5.53 Z ±1.42 5.43 Z ±1.38 6.90 Z ±1.78 5.84 Z ±1.50 5.58 Z ±1.43 6.29 Z ±1.69* * * * * *

Gaussian 6.37 Z ±1.64 6.10 Z*±1.57 7.18 Z ±1.85 6.08 Z ±1.56 5.90 Z ±1.52 6.64 Z ±1.70* * * * *

Circular  5.40 Z ±1.39 5.17 Z*±1.33 6.67 Z ±1.71 5.74 Z ±1.48 5.20 Z ±1.34 6.26 Z ±1.61* * * * *

 PPI= 95 % prediction interval (m)*
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Fig. 2: (a-f) Histograms and Shapiro–Wilk test statistics of yearly depth to groundwater for six selected years

Fig. 3: Circular variogram model fitted by WLS method to the experimental variogram for depths to groundwater of year
1991
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Fig. 4: Scatter plots between the observed and predicted depths to groundwater (by circular model fitted by WLS
method) for six selected years

394 km , while that the area with depth to groundwater of increased to 443 km . Moreover, the area with depth to2

80–90 m and 100-110 had dwindled to 265.28 and 41.24 groundwater greater than 100 m grew to 98 km  (Fig. 5f). It
km , respectively. By 2012, the area with depth to is apparent from Fig. 5, although spatially the depth to2

groundwater less than 70 m had dwindled again and groundwater in the region is relatively deep, but during
amounted to only 271 km ; the area of 80–90 m depth had the period  of  1982-2012  no  significant  variation  can be2

2

2
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Fig. 5: Spatial distribution of depth to groundwater in the study area

observed in depth to groundwater. As mentioned earlier, Temporal Variation of Depth to Groundwater: As shown
because the region is limited in surface water resources, in Table 4, however spatially the depth to groundwater in
groundwater is the major source of irrigation water. the study area is mainly variable, the value of minimum,
Excessive groundwater extraction is the main cause of the maximum and average depth to groundwater in six
decline in the water table, but since most of the croplands selected years were not significantly different. Over the
in the region are irrigated with center pivots, this past 30 years, the water table has not faced with
procedure resulting in the small fluctuations of depth to progressive drop. According to table 4, during the period
groundwater in the past 30 years. However, water of 1982-2001 water table had raised from depth of 88.90 m
management activities, e.g., changing cropping pattern to 75.72 m with rate of 0.7 m/yr. But during the period of
and growing less water requiring crops, are crucial for 2001-2006  water  table had declined about 10m with
entire of the region and especially for the central and decline rate of 1.88 m/yr. Finally, during the period of
southeastern parts of the area. 2006-2012, water table had raised again about 5m with rate
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Table 4: Statistical results of depth to groundwater for 58 observation wells
Mean Minimum Median Maximum Decline Changing Mean decline
depth depth depth depth rate trend rate

Year (m) (m) (m) (m) (m/yr) (m/yr)
1982 88.90 65.89 88.54 113.15
1991 83.09 57.02 83.05 112.92 -0.64 -0.22
1996 78.39 53.60 77.40 108.68 -0.94
2001 75.72 52.67 73.80 104.71 -0.53
2006 85.15 65.34 83.31 113.52 1.88
2012 80.02 57.90 80.38 110.96 -0.85

Fig. 6: Distribution of depths to groundwater in the study area for six selected years

Fig. 7: Box plot of observed depth to groundwater for 58 observation wells

of 0.85 m/yr. As a result, the mean water table shows fluctuations of wells W1 to W27 are more stable in
rising trend with average of 0.22 m/yr. In the main, the comparison with wells W28 to W58. Wells W1 to W27 are
depth to groundwater in the region was between 80–90 m located near the Platte River in southern parts of the
in 1982 and 1991, 70–80 m in 1996 and 2001, 80-90 m in region (Fig. 1) and probably recharged by this river that
2006 and 90–100 m in 2012 (Fig. 6). lead to maintain the invariable groundwater levels.

Fig. 7 shows box plot of observed yearly depth to Meanwhile, the outliers can be seen in the groundwater
groundwater over the study area for 58 observation wells. levels of several wells that located near the Platte River,
It is apparent from Fig. 7 that groundwater level e.g.,  W5,  W7,  W8,  W18  and  W25.  These   outliers  are
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caused by rapid rise of the groundwater due to study area. Furthermore, groundwater fluctuation was
occurrence of groundwater recharge that strengthens the found to be comparatively small for the wells located
assumption of groundwater recharge by the Platte River. nearby the Platte River in southern parts, due to
Although temporally the depths to groundwater in groundwater recharge occurring by this river that lead to
southern parts of the region maintain stable with Platte maintenance  of  the invariable groundwater levels.
River recharge, but spatially the depth to groundwater in Overall, although spatially and temporally the depths to
these parts in order to extraction of huge quantities of the groundwater are stable during the past 30 years, but are
groundwater resource for agriculture purposes are relatively deep over the whole study area that make
relatively deep that make essential the water management essential the water management strategies in the region.
strategies in southern parts of the region to achieving As a result, the performance of geostatistical techniques
appropriate water use. On the other hand, wells W28 to such as kriging in spatial modeling of groundwater levels
W58 that are located in the northern parts of the study can be helpful in identifying critical areas that are
area encounter a considerable groundwater fluctuation. suffering from deteriorating groundwater level in aquifers,
This is due to occurring groundwater recharge during which in turn addresses the necessary need to implement
rainy season and depleting groundwater resources during adequate water saving as well as groundwater
dry season for agriculture purposes. intensification techniques such as rainwater harvesting

CONCLUSION

The optimal method for fitting theoretical variogram
models namely, spherical, circular, Gaussian and We are very thankful to USGS for providing
exponential, to the experimental variogram was selected necessary groundwater-level data for the present study.
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