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Prediction of Structures and Their Characterization of an
Unknown Protein from Wheat (Triticum aestivum L.)
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Abstract: An accepted and uncharacterized protein sequence with accession number Q9LRJ1 was retrieved
from the Uni-Prot Knowledgebase. The physico-chemical properties, presence of conserved domains, presence
of secondary structures ( -helix, -sheets or coils), subcellular localization, homology modeling, 3-D structures,
Ramachandran plot and Z-scores of the protein sequence and predicted 3-D structure were calculated. The
structural and functional analysis of the protein sequence suggested predicting and searching for new
functions of many other uncharacterized proteins of plants, animals, bacteria and fungi. 
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INTRODUCTION mole of a protein which was usually measured in Daltons

The word ‘protein’ was first introduced to emphasize neutron [14]. Each protein had a distinct and typical
the importance of protein molecules in biological sciences solubility in a defined surroundings and any variation in
[1]. The word is imitated from the Greek word ‘proteios’ defined environmental conditions (buffer or solvent type,
which means ‘of the first rank’ [2]. Proteins are the key pH, ionic strength, temperature, etc.) might lead the
apparatus of living organisms and carry out a broad range proteins to drop the characteristic of solubility and
of fundamental functions in cells [3]. Proteins control precipitate out of the liquid medium [15]. The enormous
metabolic action, catalyze biochemical responses and characteristics of these twenty amino acids involved them
sustain structural integrity of cells and organisms [4]. in formation of many other kinds of protein molecules
Proteins could be listed in a different way of ranges which were important for the life sustainability. 
together with their natural functions [5]. A large data with Similarly, one of the important proteins is Glucose-6-
different ranges of proteins could be created using 20 phosphate Dehydrogenase (G6PD). G6PD were observed
different building blocks of proteins called amino acids for its transmissible range [16]. A single nucleotide
[6]. Each of the amino acid has a diverse element change in the genetic code prompts to code a different
arrangement with different properties [7]. An alteration in than the normal amino acid and lead to produce as many
just one amino acid was able to transform the as variants of G6PD [17]. It could be observed by a wide
configuration and function of a protein [8]. Amino acids range of enzyme activity of the variants of G6PD [18].
are the molecules made up of Carbon, Hydrogen, Oxygen Enzyme activity might be defined as the measure of the
and Nitrogen [9]. The amino acids Cysteine and quantity of active enzymes present in a given
Methionine included Sulfur, Carbon, Hydrogen, Oxygen surroundings and time or Enzyme activity = moles of
and Nitrogen [10]. The amino acids comprised of an amino substrate converted per unit time = rate× reaction volume
(NH ) and a carboxyl (COOH) group connected to the [19, 20]. The  SI  unit  of  the   Enzyme   activity    is katal2

same carbon atom called alpha carbon [11]. Amino acids (1 katal =1 mols ) since the unit is so large, therefore, it
may be different in the side chain and R group which was not in a practical use. The practical unit of enzyme activity
linked to the alpha carbon [12]. The molecular weight is µmol min  i.e. 1 enzyme unit (U) = 16.67 nanokatals =
(MW) of proteins might be defined as the mass of one 1 µmol min  [21].

unit [13]. One Dalton is the atomic mass of one proton or
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Now a day, G6PD deficiency is extremely frequent MATERIALS AND METHODS
and wide-reaching [22]. The deficiency may be competent
to stimulate hemolytic anemia by reactions of certain
medicines (antibiotics, antipyretics or antimalarials) or
incidence of an uncomplicated infection or disease or
contamination or food poisoning [23]. The deficiency
persuaded in an organism may be hereditary or attained
and the diagnosis depended on the source and nature of
the disease [24]. The inhibitors of G6PD were in
exploration to treat cancers and other diseases for the
reason that cell growth and cell proliferations were
affected by G6PD [25]. The recognized inhibitor protein
for the G6PD is didehydroepiandrosterone (DHEA). The
DHEA has been also known as dehydroepiandrosterone
or androstenolone or prasterone or 3 -hydroxyandrost-5-
en-17-one or 5-androsten-3 -ol-17-one [22]. The main
features of the DHEA involved as an endogenous steroid
hormone, most circulating steroid, produced in adrenal
glands, gonads and brain, functions as metabolic
intermediate in the biosynthesis of androgen and
estrogen sex steroids [26].

Therefore, the importance of G6PD and its inhibitor
protein encouraged to explore the unknown functions and
structure of putative uncharacterized protein sequence of
G6PD from Triticum aestivum L. with accession number
Q9LRJ1. Among the food crops, wheat (Triticum aestivum
L.) is one of the most abundant sources of energy and
proteins and its increased production is essential for food
security [27]. In the present study describes the
physicochemical properties, conserved domains,
secondary structures, subcellular localization, homology
modeling, 3D structure prediction, ramachandran plot and
z-score prediction of the protein sequence. 

An accepted and uncharacterized protein sequence
with accession number Q9LRJ1 was retrieved from the
Uni-Prot Knowledgebase [28]. The physico-chemical
properties of the protein sequence were predicted using
ProtParam [29]. The presence of conserved domains
within the sequence was predicted from conserved
domain databases (CDD) at NCBI [30]. The presence of
secondary structures ( -helix, -sheets or coils) in the
protein  sequence   was   predicted   by   PSIPred  [31].
The subcellular localization of the protein sequence was
carried out by Plant-mPLoc [32- 35]. The homology
modeling of the protein sequence was performed and
searched from BLASTp with default parameters [36]. The
3-D structures were predicted of the homology modeling
of the protein sequence using Modweb [37]. The
Modweb generated 3-D structures were validated with the
help of predicted Ramachandran plot from SAVS [38, 39].
The Z-score of the predicted 3-D structure were calculated
by ProSA [40]. 

RESULTS

The physicochemical properties of the
uncharacterized protein sequence (Accession number
Q9LRJ1) from wheat were presented (Table 1). The
conserved domains, secondary structures, subcellular
localization, homology modeling, 3D structure prediction,
ramachandran plot, z-score prediction and window slide
prediction of amino acids were presented (Fig. 1-8). 

Table 1: Physicochemical properties of the query protein sequence. 

Number of amino acids 509

Total number of atoms 8129

Molecular Weight (dalton) 57747.8

Total number of negatively charged residues (Asp+Glu) 71

Total number of positively charged residues (Arg+Lys) 64

Theoretical pI 5.91

Empirical formula C H N O S2589 4058 698 769 15

Instability index 46.66

Aliphatic index 87.88

Grand average of hydropathicity (GRAVY) -0.391

Extinction coeficients (M-1cm-1 at 280 nm in water) 60530 (abs 0.1%(=1 g/l)) 1.048, assuming all pairs of Cys residues form cystines

60280 (abs 0.1%(=1 g/l)) 1.044, assuming all pairs of Cys residues are reduced

Estimated half life [N-terminal of the sequence considered is M (Met)] 30 h (mammalian reticulocytes, in vitro)

>20 h (yeast, in vivo)

>10 h (E. coli, in vivo)
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Fig. 1: Conserved domain prediction of protein sequence (G6PD).

Fig. 2: Secondary structure prediction of the protein sequence by PSIPred.

(a) (b)
Fig. 3: 3D model predicted of the protein sequence. A, 4e9i and B, 2bhl
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Fig. 4: Homology of the protein sequence with predicted 3D models.

Fig. 5: BLAST prediction of the protein sequence (query protein 1).

Fig. 6: Z-score prediction. A, 4e9i. B, 2bhl.

Fig. 7: To predict amino acid sequence position on window. A, 4e9i. B, 2bhl.
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Fig. 8: Predicted Ramachandran plot for both the 3D half cystines) and 1.044 (no cysteine appears as half
models. Blue= helix, Red=strand, green=turns and cystines) respectively (Table 1). The molar extinction
loops. coefficient of a protein could be estimated with the known

DISCUSSION of tyrosine, tryptophan and cystine at a given wavelength

The physicochemical properties of the coefficient of a denatured protein. The reason might be
uncharacterized protein sequence from wheat (Triticum the not appreciable absorbance of the wavelength >260
aestivum L.) with accession number Q9LRJ1 showed 8129 nm by cysteine than the cystine [53]. The half life is the
total number of atoms, 509 amino acids in the sequence prediction of time for half of the amount of protein in a cell
with molecular weight of 57747.8 daltons (Table 1). The to disappear after its synthesis in a cell [54]. The
high molecular weight (57747.8 daltons) of the sequence estimated  half  life  of  the   protein   sequence   showed
suggested the bulkiness of the protein in nature [41, 42]. 30 hours in mammalian reticulocytes, >20 hours in yeast
The protein sequence exhibited the 71 negatively charged and > 10 hours in E. coli assuming N-terminal amino acid
(Asp and Glu) and 64 positively charged (Arg and Lys) of the sequence (Table 1). 
residues of amino acids (Table 1). Each protein has an The number, type and distribution of nonpolar amino
amino group at one end and a carboxyl group at the other acid residues within the protein determine its hydrophobic
end as well as numerous amino acid side chains, some of character. The distinctive physical, chemical and
which are charged [43]. Therefore, each protein carries a biological properties associated with an amino acid are the
net charge [44]. The net protein charge is strongly result of the R group. There are 20 major amino acids that
influenced by the pH of the solution [45]. The isoelectric differ in their R-group. The R-group can be hydrophobic
value of the protein sequence indicated 5.91 which or polar, aromatic or aliphatic, charged or uncharged. The
suggested the sum total of protein as a negatively different R-groups are responsible for amino acids having
charged protein (Table 1). A protein carried a pH below different polarities, solubilities and chromatographic
their pI indicates a net positive charge on the protein and behaviour. The structure and biological function of a
a pH above their pI indicates a net negative charge on the protein depend on its amino acid composition. Proteins
protein [46, 47]. The empirical formula of the protein was are typically characterized by their size (molecular weight)
predicted as C H N O S (Table 1). The instability and shape, amino acid composition and sequence,2589 4058 698 769 15

index provides an estimate of the stability of protein in a isolelectric point (pI), hydrophobicity and biological
test tube [48]. A protein whose instability index is smaller affinity. Therefore, the differences in these properties
than  40  are  predicted  as  stable  and  a  value     above could be used as the basis for separation methods in a
40   predicts   that  the  protein  may  be  unstable  [49]. purification strategy. 
The aliphatic index of a protein is the relative volume The present study focused on sequence and
occupied by aliphatic side chains (alanine, valine, structural analysis of assumed uncharacterized protein
isoleucine and leucine). It may be regarded as a positive sequence with accession number Q9LRJ1 (g6pd) of
factor for the increase of  thermostability  of  globular Triticum aestivum L. The conserved domain analysis of
proteins [50]. The aliphatic and instability index of the the sequence indicated the presence of NAD type of multi
desired protein was predicted as 87.88 and 46.66 which binding domains [55]. The query sequence of 509 amino

suggested the high protein thermal stability because of
the presence of aliphatic side chains but unfortunately the
protein showed less stability in test tube respectively
(Table 1). The grand average of hydropathy (GRAVY)
value for a peptide or protein is calculated as the sum of
hydropathy values of all the amino acids divided by the
number of residues in the sequence [51]. The GRAVY
showed -0.391 which suggested that the protein is
hydrophilic and soluble in nature (Table 1). The extinction
coefficient indicates how much light a protein absorbs at
a certain wavelength [52]. The extinction coefficients of
the protein showed 1.048 (all cysteine residues appear as

amino acid composition. The molar extinction coefficient

could be used for the estimation of the extinction
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acids indicated the two specific hits with superfamilies used for the profile computation [65]. The window size
(G6PD_N and G6PD_C) which included the multidomains (40) of both the models suggested the hydrophobic
(PLN02539, PTZ00309, zwf, PRK05722, PRK12853, nature of the amino acids and makes the core of the
PLN02640, PLN02333, PRK12854) (Fig. 1). The secondary protein. The ProtScale permitted computation and
structure of the protein sequence was performed [56]. The representation of the summary formed by any amino acid
prediction of secondary structures showed 13 -helix, 13 range on a preferred protein scale [66]. ProtScale might be

-sheets and mostly coils (Fig. 2). The subcellular used for presently 20 amino acids and additional
localization of the protein sequence was computed by predescribed scales made available on ExPASy. To
Plant-mPLoc and the predicted location found to be produce data for a plan, the protein series were scanned
chloroplast and cytoplasm [57]. BLASTp was performed with a sliding window of a given size. At each site, the
for the protein sequence and searched 3-D models for mean scale value of the amino acids within the window
homology with default parameters against NCBI [58]. The was considered and that value was plotted for the
two 3-D homology structures 4e9i and 2bhl were very midpoint of the window [67]. The predicted 3-D structures
close to the template protein sequence with 55 and 57 (4e9i and 2bhl) were further validated for ramachandran
percent similarity respectively (Fig. 3). The sequence plot (Fig. 8). The plot suggested that the axis of -helix
similarity of the query protein with the predicted 3D rotating in the y-plane [68]. The planer peptide bonds of
models was almost exactly similar (>=98%) and the two the -helix rotate about axis and an open centre of the
models were very close to each other (Fig. 4). The E-value helix visible from the end of the a-helix [69]. The plot
is the number of different arrangements with a score equal suggested the planes of peptide bonds and segments of
to or superior than S  which  were  anticipated  to  occur twisted -sheets [70]. The -helix and -sheets were
by chance   in   a  data  base search  [59].  The  predicted surrounded by thick turns and loops [71, 72]. 
E-value  score  become  more  significant  with  the lower Therefore,  it  might  be  suggested  that   several
E-value [31]. The phylogenetic BLAST analysis form other  uncharacterized  proteins of plants, animals,
NCBI of the protein sequence suggested that the query bacteria and fungi which have important roles in
protein was near to glucose 6 phosphate dehydrogenase biological functions may be predicted for their present
of the Triticum aestivum and had some different protein and future roles and functions and also search for new
sequences (Fig. 5). functions of that proteins with the help of bioinformatics

The z-scores were calculated from the server and approach.
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