Population Parameters and Length-Weight Relationship of Thinspine Sea Catfish (*Plicofollis tenuispinis*) in Northwest of Persian Gulf (Khuzestan Coastal Waters, Iran)

Ali Taherimirghaed, Seyedahmadreza Hashemi and Ahmadreza Hosseini

1Department of Aquatics Health and Diseases, Tehran University, Iran
2Department of Fishery, Gorgan University of Agricultural Sciences and Natural Resources, Iran
3Department of Fisheries, Jiroft University, Iran

Abstract: During this study from December 2009 to November 2011, 403 Thinspine sea catfish fish were caught and their weight and length were measured. Total number of caught fishes included, 33 males, 77 females and 293 immature fishes. The Mean, maximum and minimum total lengths were 236±82, 470 mm and 121 mm respectively. The Mean, maximum and minimum total weight for this species was 184±150 g, 1385 g and 14 g respectively. The length-weight relationship were calculated as \(W=0.000006 FL^{3.07} \) (n=77, \(R^2=0.98 \)) for females, \(W=0.000004FL^{3.15} \) (n=33, \(R^2=0.98 \)) for males and \(W=0.000007 FL^{3.15} \) (n=403, \(R^2=0.98 \)) for total fishes verifying calculated \(b \) with 3, using Students t-test there was significant difference between calculated \(b \) and 3 (P<0.05). Population parameters were calculated for total fish as below, \(L_m: 61 \) (cm); \(K: 0.2 \) (year\(^{-1}\)); \(t_r: -0.69 \) and \(\Phi': 2.87 \) respectively. Based on results, this species is classified as mediate vulnerable group fishes.

Key words: Population Parameters • Thinspine Sea Catfish • Persian Gulf

INTRODUCTION

The Persian Gulf is a semi enclosed sea that laying almost between the latitudes of 25°-32° N and longitudes of 48°-56° E. This water basin is shallow continental shelf and average of depth was 35m, which is increasing from Arvend estuary and reach to maximum in strait of Hormuz Strata. This local is considered one of the richest areas in fishery resources where large quantities of fish and shrimps are concentrated in different locations, particularly in the territorial waters of the State of Iran [1]. Overall purpose of fisheries science is to provide decision-makers with advice on the relative merits of alternative management. Demography rates are fundamental to fisheries stock assessment and estimated of potential yield [2]. In tropical waters; lack of distinct seasonality has made such analyses more difficult [3]. The Ariidae or arid catfish are a family of catfish that mainly live in marine waters with many freshwater and brackish water species. They are found in shallow temperate and tropical seas around the coastlines of North and South America, Africa, Asia and Australia. They are absent from Europe and Antarctica [4]. *P. tenuispinis* found in coastal waters down to a depth of about 50 m [5]. The Thinspine sea catfish lives in the demersal, amphidromous and depth range 20-50 m environment [6]. and also, feeds mainly on invertebrates and small fishes. Thinspine sea catfish caught mainly with bag nets, dip nets, bamboo stake traps and on hook and line [5]. Different aspects of biological Parameters of *P. tenuispinis* have been studied by different authors are those of Talwer and Jhingran [7], in Indian waters (Waltair, Visakhapatnam). However, no study so far has been made on this species population parameters in Khuzestan Coastal Waters (northwest of Persian Gulf). In this context, the aim of the present study was twofold: (i) to estimate its population parameters via length frequency methods (ii) to determine the length-weight relationship of the population of this species in Khuzestan Coastal Waters (northwest of Persian Gulf). Results will greatly contribute to elaborating management programs for this economically important fish species of the region under study.
MATERIALS AND METHODS

The main fishing areas of P. tenuispinis in the northwest of Persian Gulf are located in Liphe-Busafe and Bahrekan fishing area between 29° 44’ to 07’N and 48° 45’ to 49° 50’. A total number of 403 individuals of P. tenuispinis were captured during 2009 to 2011 using bottom trawl and gill net. Also, this collected from recreational fishermen and then transferred in ice box to the laboratory. In the laboratory, Fork length (±1.0 mm), sex and weight (±0.001 g wet weight) were recorded for each fish. Parameters of the length weight relationship were obtained by fitting the power function \(W = a \times FL^b \) to length and weight data where: \(W \) is the total wet weight, \(a \) is constant determined empirically, \(FL \) is the fork length [8]. In order to verify if calculated \(b \) was significantly different from 3, the Students t-test was employed [9]. The data were pooled monthly from different landing sites and subsequently grouped into classes of three centimeter intervals. The data were analysis using FISAT II (FAO-ICLARM Stock Assessment Tools) as explained in details by Gayanilo et al. [10]. Growth was calculated by fitting the von Bertalanffy growth function to length frequency data. The von Bertalanffy growth equation is defined as follows [3]: \(L_t = L_a \left[1 - \exp\left(-K (t-t_0) \right) \right] \), Where \(L_t \) is length at time \(t \), \(L_a \) the asymptotic length, \(K \) the growth coefficient and \(t_0 \) is the hypothetical time at which length is equal to zero. The \(t_0 \) value estimated using the empirical equation [11]. \(\log_{10}(t_0) = -0.3922 - 0.2752 \log_{10} L_a - 1.038 \log_{10} K \). The fitting of the best growth curve was based on the ELEFAN I program [12], which allows the fitted curve throughthe maximum number of peaks of the length-frequency distribution. With the help of the best growth curve, growth constant (K) and asymptotic length (L_a) were estimated.

The growth performance \((\Phi') \) of P. Tenuispinis population in terms of length growth was computed using the index [12]. \(\Phi' = \log_{10} K + 2 \log_{10} L_a \). Statistical analyses were performed with SPSS 14 software package and a significance level of 0.05 was adopted.

RESULTS

During this study from December 2009 to November 2011, 403 Thinspine sea catfish fish were caught and their weight and length were measured. The main fishing areas of P. tenuispinis in the northwest of Persian Gulf are located in Liphe-Busafe and Bahrekan fishing area between 29° 44’ to 07’N and 48° 45’ to 49° 50’ (Fig. 1).

![Fig. 1: Location of two landing sites of Thinspine sea catfish in northwest of Persian Gulf (Iran)](image1)

![Fig. 2: The length-weight relationship curve for female fish of Thinspine sea catfish in northwest of Persian Gulf (Iran)](image2)

![Fig. 3: The length-weight relationship curve for male fish of Thinspine sea catfish in northwest of Persian Gulf (Iran, 2009-2011)](image3)

![Fig. 4: Growth curve of Thinspine sea catfish from Iran by ELEFAN I superimposed on the restructured length-frequency diagram (L_a= 61 cm and K= 0.2yr^{-1})](image4)
Table 1: Length characteristics (mm) and Weight characteristics (g) of Thinspine sea catfish in northwest of Persian Gulf (2009-2011)

<table>
<thead>
<tr>
<th>Sex</th>
<th>n</th>
<th>Min</th>
<th>Max</th>
<th>Mean ± SD</th>
<th>Min</th>
<th>Max</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>33</td>
<td>205</td>
<td>470</td>
<td>260±94</td>
<td>88</td>
<td>836</td>
<td>241±231</td>
</tr>
<tr>
<td>Females</td>
<td>77</td>
<td>130</td>
<td>450</td>
<td>305±101</td>
<td>21</td>
<td>1385</td>
<td>379±290</td>
</tr>
<tr>
<td>Immature</td>
<td>293</td>
<td>121</td>
<td>365</td>
<td>218±103</td>
<td>14</td>
<td>488</td>
<td>118±101</td>
</tr>
<tr>
<td>Total</td>
<td>403</td>
<td>121</td>
<td>470</td>
<td>236±82</td>
<td>14</td>
<td>1385</td>
<td>184±150</td>
</tr>
</tbody>
</table>

Total weight for this species was 184±150 g, 1385 g and 14 g respectively (Table 1).

Length-Weight Relationship: The length-weight relationship were calculated as $W=0.000006FL^{3.07}$ (n=77, $R^2=0.98$) for females, $W=0.000004FL^{1.15}$ (n=33, $R^2=0.98$) for males and $W=0.000007FL^{3.06}$ (n=403, $R^2=0.98$) for total fishes (Figs. 2 & 3), verifying calculated b with 3, using Students t-test there was significant difference between calculated b and 3 (P<0.05).

Growth Studies: As the study has allowed the estimation of several pairs of growth constant values, a mean value was sought by trying the Response Surface Analysis routine. The best fit given by method, Population parameters were calculated for total fish as below, L_0: 61 (cm); K: 0.2 (year$^{-1}$); t_0: -0.69 and Φ': 2.87 respectively (Fig. 4).

DISCUSSION

The length-weight relationship in fish is of great importance in fisheries assessments [13]. Length and weigh relationship in conjunction with age data can give information on the stock composite, age at maturity, life span, mortality, growth and production. The relative robustness or degree of well-being of a fish expressed as the coefficient of condition (condition factor) is an important tool for the study of fish biology, mainly when the species lies at the base of the higher food web [14]. The difference in the ‘b’ value of male and female indicated that the male were heavier than the females of the same length group. In the present study the mean value of ‘b’ is 3.15 in males and 3.07 in females. It means the value of ‘b’ in males is more than the females. The b values in the weight-length model were measured close to 3 for Thinspine sea catfish fishes that indicating that weight increased allometrically with length [2]. The value of b for Indian waters (Waltair, Visakhapatnam) was estimated 2.88 for both sexes [7]. The variation of b in the different regions could be by seasonal fluctuations in environmental parameters, physiological conditions of the fish at the time of collection, sex, gonad development and nutritive conditions in the environment of fish [8]. In present study, length- weight (a) value was 0.0208 and the value of (a) for Indian waters (Waltair, Visakhapatnam) was estimated 0.018 for both sexes [8]. In length- weight (a) value is related to fish condition. Also (a) depends on weight and it can be used as status value [7]. Length–weight relationship is a practical index of the condition of fish and may vary over the year according to several exogenous and endogenous factors such as food availability, feeding rate, health, sex, gonad development, spawning period and preservation techniques [15, 16]. According to Marthin [17] the range of “b” could be from 2.5 to 4 and Tesch [16] believed “b=3 in fish with isometric growth. Talwer and Jhingran [7], estimated infinity length and growth coefficient of Thinspine sea catfish 82 cm and 0.21 y$^{-1}$ in Indian waters (Waltair, Visakhapatnam). In the present study L_0 and K of Thinspine sea catfish indicated lower infinity length and growth coefficient. Unfortunately, no references from other studies for L_0 and K are available regarding this species. Parsamanesh et al. [18] estimated L_0 and K of *Arius thallassinus* 91 cm and 0.11 y$^{-1}$ in northwest of Persian Gulf (Khuzezanost Coastal Waters, Iran). Differences between recorded L_0 and K are influenced by ecological characteristics, population size and gene frequency of species considering their habitat and according to natural selection, appear different adaptation pattern during their life [19]. L_0 and K amounts have reverse correlation and with decrement L_0, amount of K increases and vice versa [3]. Differences in growth rates between regions indicated a stock separation [20] which has, in some cases, supported a genetic difference [21]. Age at zero length (t_0) were calculated as -0.18 for this species in Indian water [7]. With negative t_0 values, juveniles grew more quickly than the predicted growth curve for adults and with positive t_0 values, juveniles grew more slowly [2]. Values of Φ' for *P. tenuispinis* available from other studies has 3.51 in Indian waters [7]. The estimate obtained in our study (2.87) compares with the upper of other studies. A method of validating growth parameters involves the comparison of growth performance indices (Φ') in terms of growth in length with...
other estimates obtained for the same or a similar species [22]. According to biological characteristics and with
compare to American Fisheries Society (AFS) indices [23],
Thinskine sea catfish is classified as mediate vulnerable
group fishes. Further research as stock assessment is
needed in order to obtain an adequate and comprehensive
understanding of biology and ecology in this important
order in future.

ACKNOWLEDGMENTS

We are very grateful the experts of the South of Iran
aquaculture fishery research center, Ahwaz for helping
the project work.

REFERENCES

relationship amongst economic fishes within the
Persian Gulf waters. South of Iran Aquaculture
Fishery Research Center, Ahwaz. Iran, pp: 33.
In Farsi.
2. King, M., 2007. Weight relationship of marine from
southern Brazil, Fisheries biology & assessment and
tropical fish stock assessment, FAO Fisheries
technical paper, Roma, pp: 450.
5. Fischer, W., I. Sousa, C. Silva, A. De Freitas,
J.M. Poutriers, W. Schneider, T.C. Borges, J.P. Feral
and A. Massinga, 1990. Fichas FAO de identificação
de espécies para a atividade de pesca. Guia de
campo das espécies comerciais marinhas e de
água salobras de Moçambique. Publicação preparada em colaboração com o Instituto de
Investigação Pesquera de Moçambique, com financiamento do Programa PNUD/FAO MOZ/86/030
from global to regional scales. Final Report of the
R&D-Projekt 808 05 081. Federal Agency for Nature
Conservation, Bonn, Germany, pp: 329.
India and adjacent countries. Volume 2. A.A. Balkema, Rotterdam.
biology, fish biology & Ecology laboratory,
The FAO-ICLARM Stock Assessment Tools (FiSAT)
Users guide. FAO Computerized Informat ion Series
(Fisheries), No. 8. Rome, FAO, pp: 266.
governing factors in fish growth: a generalization of
Von bertalanffys growth formula. Berichte aus dem
institute fuer meereskunde,63, Kiel University, Kiel.
12. Pauly D. and N. David, 1981. ELEFAN-I a basic
program for the objective extraction of growth
23(1): 14-16.
14. Diaz, L.S., A. Roa, C.B. Garcia, A. Acero and
G. Navas, 2000. Length-weight relationship of
demersal fishes from the upper continental slope off
production in freshwater. Blackweu Scientific Pub,
assessment of fish production in freshwater. Ed. W.E.
Ricker. IBP Handbook No. 3.
environmental control of body form in fishes. Univ.
18. Parsamanesh, A., M.T. Kashi and G.H. Eskandari,
1996. Stock assessment of commercial fish in coastal
waters of Khuzestan province. Fishery Research
Institute, pp: 70.
and their consequences for fisheries management.
species of seer fishes Scomber morus commerson,
S. guttatus and S. lineolatus. Indian J. Fish.,
28(1/2): 104-127.
school mackerel (S. queenslandicud) and spotted
mackerel (S. monroi) in Queenslan east-coast waters
with implications for stock structure. Mar. Freshwater